Hostname: page-component-7bb8b95d7b-pwrkn Total loading time: 0 Render date: 2024-09-12T14:15:43.731Z Has data issue: false hasContentIssue false

Passivation of Si(100)2×l Surfaces With Elemental Sulfur

Published online by Cambridge University Press:  10 February 2011

Aris Papageorgopoulos*
Affiliation:
Department of Physics and Center for High Performance Polymers and Ceramics Clark Atlanta University, Atlanta, GA 30314, USA
Get access

Abstract

Deposition of elemental S on Si(100)2×1 surfaces at room temperature changes the reconstructed Si(100)2×1 to its original bulk-terminated Si(100)l×l surface. Sulfur forms initially a (2×l) on the Si(100)2×l surface and subsequently a (l×1) on the Si(100)l×l. Above 1ML, sulfur is diffused into the Si bulk near the surface. The sticking coefficient of S on Si(100) surface is constant up to 2 ML. Deposition of S at RT up to 1 ML increases the work function of the surface by about.3±0.05 eV. Above I ML, as the S is diffused into the Si bulk, the work function decreases.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. MacInnes, A. N., Power, M. B., and Barron, A. R. Appl.Phys.Lett., 62 (1993), 711.Google Scholar
2. Chang, R. R. and Life, D. L., Appl. Phys. Lett., 53(2) (1988),134 Google Scholar
3. Jain, R. K. and Laundis, G. A., Twenty-Second IEEE Photovoltaic Conference, Las Vegas NV, Oct. 7–11 (1991).Google Scholar
4. Weinberg, I., Swartz, C. K. and Harf, R. E., Eighteenth EEE Photovoltaic Specialists Conference, Las Vegas NV, Oct. 21–25 (1985).Google Scholar
5. Power, M. B., MacInnes, A. N., Hepp, A. F. and Barron, A. R., Mat. Res. Soc. Symp. Proc., 282 (1993), 659 Google Scholar
6. Kruger, Peter and Pollman, Johannes, Phys. Rev. B 47 (1993), 1898.Google Scholar
7. Kaxiras, Efthimios, Rapid Comm. Phys. Rev. B 43 (1991), 6824..Google Scholar
8. The Chemical Physics Of Solid Surfaces and Heterogenous Catalysis, ed. King, D. A. and Woodruff, D. P., (Elsevier, Amsterdam, 1988), Vol.5, p.37.Google Scholar
9. Chadi, D. J., Phys. Rev. Lett., 43 (1979), 43.Google Scholar
10. Tromp, R. M., Smeenk, R. G. and Saris, F. W., Phys. Rev. Lett., 46 (1981), 9392.Google Scholar
11. Aono, M., Hou, Y., Oshima, C. and Ishizawa, Y., Phys. Rev. Lett., 49 (1982), 567.Google Scholar
12. Holland, B. W., Duke, C. B. and Paton, A., Surf. Sci., 140 (1984), L 269.Google Scholar
13. Hamers, R. J., Tromp, R. M. and Demuth, J. E., Phys. Rev. B 34 (1986), 5343.Google Scholar
14. Wolkow, R. A., Phys. Rev. Lett., 68 (1992), 2636.Google Scholar
15. Bringans, R. D., Uhrberg, R. I. G., Bechrach, R. Z. and Northrup, J. E., Phys.Rev.Lett., 55 (1985), 533.Google Scholar
16. Bringans, R. D., Uhrberg, R. I. G. and Bechrach, R. Z., Phys. Rev. B 34 (1986), 2373.Google Scholar
17. Uhrberg, R. R. G., Brigans, R. D., Olmstead, M. A., Brachrach, R. Z. and Northup, J. E., Phys. Rev. B 35 (1987), 3945.Google Scholar
18. Schnell, R. D., Himpsel, F. J., Bogen, A., Rieger, D. and Steinmann, W., Phys. Rev. B (1985), 8052.Google Scholar
19. Weser, T., Bogen, A., Konrad, B., Schnell, R. D., Schug, C. A., Moritz, W. and Steinmann, W.,Surf. Sci., 201 (1988), 245.Google Scholar
20. Weser, T., Bogen, A., Konrad, B., Schnell, R. D., Schug, C. A. and Steinmann, W., Procedings of the 18th nternational Conference on the Physics of Semiconductors, ed. Engstrom, O., (World Scientific, Singapore, 1987), p.97 Google Scholar
21. Moriarty, P., Koenders, L. and Hughes, G., Phys. Rev. B 47 (1993), 15950.Google Scholar
22. Papageorgopoulos, C. A., Kamaratos, M., Surf. Sci. 338, 77 (1995)Google Scholar
23. Blaszczyszyn, M., Blaszczyszyn, R., Medewski, Z., Melmed, A. J. and Madey, J. E., Surf. Sci., 131 (1983), 433.Google Scholar