Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-18T06:05:14.537Z Has data issue: false hasContentIssue false

A Percolation Model for Elastic Softening in Intermetallic Compounds During Solid-State Amorphization

Published online by Cambridge University Press:  26 February 2011

Carlo Massobrio
Affiliation:
Ecole Polytechnique Fédérale de Lausanne, Institut de Physique Expérimentale, CH-1015 Lausanne, Switzerland
Vassilis Pontikis
Affiliation:
Laboratoire d'Etudes des Solides Irradiés, CEREM, CEA, Ecole Polytechnique, 91128 Palaiseau Cedex, France
Get access

Abstract

By using isobaric-isothermal molecular dynamics and an n-body effective potential, we show that a dramatic elastic softening precedes the amorphization of NiZr2 occurring on chemically disordering the alloy. Above a critical level of chemical disorder, the shear elastic constant of the alloy increases suddenly up to a value comparable to the one of the amorphous solid obtained by quenching the liquid. This phenomenon occurs at the percolation threshold of the anelastically distorted regions surrounding the antisite defects. The percolation model describes satisfactorily experimental findings concerning the elastic softening and the loss of crystalline order in intermetallic compounds induced by irradiation or hydrogenation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Russel, K. C., Prog. Mater. Sci. 28, 229 (1984).Google Scholar
2. Okamoto, P. R. and Meshii, M., ASM Materials Science Seminar, Chicago, IL, 1988, in Science of Advanced Materials, edited by Wiedersich, H. and Meshii, M. (ASM International, Ohio, 1990).Google Scholar
3. Mori, H. and Fujita, H., Jpn. J. Appl. Phys. 21, L494 (1982).Google Scholar
4. Limoge, Y., Rahman, A., Hsieh, H. and Yip, S., J. Non-Cryst. Solids, 99, 75 (1988).Google Scholar
5. Massobrio, C., Pontikis, V. and Martin, G., Phys. Rev. Lett. 62, 1142 (1989).CrossRefGoogle Scholar
6. Massobrio, C., Pontikis, V. and Martin, G., Phys. Rev. B, 41, 10486 (1990).CrossRefGoogle Scholar
7. Sabochick, M. J. and Lain, N. Q., Phys. Rev. B43, 5243 (1991).Google Scholar
8. Sabochick, M. J. and Lam, N. Q., Mater. Res. Soc. Proc. 201, 387 (1991).Google Scholar
9. Rehn, L. E., Okamoto, P. R., Pearson, J., Bhadra, R. and Grimsditch, M., Phys. Rev. Lett. 59, 2987 (1987).CrossRefGoogle Scholar
10. Grimsditch, M., Gray, K. E., Bhadra, R., Kampwirth, R. T. and Rehn, L. E., Phys. Rev. Lett. 59, 2987 (1987).Google Scholar
11. Massobrio, C. and Pontikis, V., Phys. Rev. B, 45, 2484 (1992).Google Scholar
12. Meng, W. J., Okamoto, P. R., Thompson, L. J., Kestel, B. J. and Rehn, L. E., Appl. Phys. Lett. 53, 1820 (1988).Google Scholar
13. Meng, W. J., Faber, J. Jr., Okamoto, P. R., Rehn, L. E., Kestel, B. J. and Hitterman, R. L., J. Appl. Phys. 67, 1312 (1990).Google Scholar
14. Ray, J., Comp. Phys. Comm. 8, 109 (1988).Google Scholar
15. Parrinello, M. and Rahman, A., J. Appl. Phys. 52, 7182 (1981).Google Scholar
16. Andersen, H. C., J. Chem. Phys. 72, 2384 (1980).CrossRefGoogle Scholar
17. Nosé, S., J. Chemn. Phys. 81, 511 (1984).Google Scholar
18. Wolf, D., Okamoto, P. R., Yip, S., Lutsko, J. F. and Kluge, M., J. Mater. Res. 5, 286 (1990).Google Scholar
19. Johnson, W. L., Progress in Mat. Sci. 301,81 (1986).Google Scholar
20. Friedel, J., Phil. Mag. 46, 514 (1955).Google Scholar
21. Eshelby, J. D., Solid State Phys. 3, 79 (1956).Google Scholar
22. Balberg, I., Phil. Mag. B, 56, 991 (1987).CrossRefGoogle Scholar