Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-24T12:21:24.006Z Has data issue: false hasContentIssue false

Phase Formation in Zr/Fe Multilayers During Kr Ion Irradiation

Published online by Cambridge University Press:  10 February 2011

A. T. Motta
Affiliation:
Department. of Nuclear Engineering, Pennsylvania State University
A. Paesano Jr.
Affiliation:
Instituto de Fisica, Universidade Estadual de Maringa, Brasil
R. C. Birtcher
Affiliation:
Materials Science Division, Argonne National Laboratory
E. A. Ryan
Affiliation:
Materials Science Division, Argonne National Laboratory
M. E. Bruckmann
Affiliation:
Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Brasil
S. R. Teixeira
Affiliation:
Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Brasil
L. Amaral
Affiliation:
Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Brasil
Get access

Abstract

A detailed study has been conducted of the effect of Kr ion irradiation on phase formation in Zr-Fe metallic multilayers, using the Intermediate Voltage Electron Microscopy (IVEM) at Argonne National Laboratory. Metallic multilayers were prepared with different overall compositions (near 50–50 and Fe-rich), and with different wavelengths (repetition thicknesses). These samples were irradiated with 300 keV Kr ions at various temperatures to investigate the final products, as well as the kinetics of phase formation. For the shorter wavelength samples, the final product was in all cases an amorphous Zr-Fe phase, in combination with Fe, while specially for the larger wavelength samples, in the Fe-rich samples the intermetallic compounds ZrFe2 and Zr3Fe were formed in addition to the amorphous phase. The dose to full reaction decreases with temperature, and with wavelength in a manner consistent with a diffusion-controlled reaction.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schwarz, R.B. and Johnson, W.L., Phys. Review Lett., 1983. 51: p. 415.Google Scholar
2. Samwer, K., Phys. Reports, 1988. 161(1): p. 141.Google Scholar
3. Krebs, H.U., Webb, D.J., and Marshall, A.F., Phys. Rev. B, 1987. 35(10): p. 53925395.Google Scholar
4. Karpe, N., et al., Mat. Sci. and Eng. A, 1994. 179/180: p. 582586.Google Scholar
5. Paesano, A., Teixeira, S. R., and Amaral, L., J. Appl. Phys., 1991. 70(9): p. 48704876.Google Scholar
6. Lemaignan, C. and Motta, A.T., 1994.Google Scholar
7. Ivey, D.G. and Northwood, D.O., J. of the Less Comm.Met., 1986. 115: p. 295306.Google Scholar
8. Yamamoto, K., et al., J. of Mag.Mag. Mat., 1993. 126(1993): p. 128130.Google Scholar
9. Kiauka, W. and Keune, W., Hyperfine Int., 1990. 57: p. 19011904.Google Scholar
10. Paesano, A., et al., Mat. Res. Soc. Symp.Proc., 1997. 439: p. 419424.Google Scholar
11. Allen, C.W. and E.A., Ryan. Mat.Res. Soc. Simp. Proc. 1997 439 p. 277288.Google Scholar
12. Ding, F.R., Okamoto, P. R., and Rehn, L. E., Nucl.Instr. Meth.Phys.Res.B, 1989. 39: p. 122125.Google Scholar
13. Motta, A.T., et al., to be submitted to Nuc.Instr.Meth.Phys.Research B, 1997.Google Scholar
14. Rodriguez, C.R., et al., J.Mater.Sci., 1995. 30: p. 196200.Google Scholar
15. Kopcewicz, M. and Williamson, D.L., J. of Appl.Phys., 1993. 74(7): p. 43634370.Google Scholar
16. Motta, A.T., Howe, L.M., and Okamoto, P.R., Materials Research Society Symposium Proceedings, 1995. 373: p. 183188.Google Scholar