Hostname: page-component-7bb8b95d7b-wpx69 Total loading time: 0 Render date: 2024-10-03T06:51:58.278Z Has data issue: false hasContentIssue false

Phonons and Thermal Conductivity in Skutterudite Thermoelectrics

Published online by Cambridge University Press:  01 February 2011

C. A. Kendziora
Affiliation:
Materials Science and Technology Division, Naval Research Laboratory, Washington, DC 20375
G. S. Nolas
Affiliation:
Department of Physics, University of South Florida, Tampa, FL 33620
Get access

Abstract

We study Raman phonon vibrations and relate them to thermal conductivity for empty and filled skutterudites designed for thermoelectric applications, where low thermal conduction is critical. Polarized Raman scattering spectra of crystallite and polycrystalline samples are compared with theoretical predictions and analyzed in comparison to the thermal conduction properties. Our emphasis is on the CoSb3 skutterudite and its filled derivatives, including materials with Ge, Sn, and La in the cages. We observe a strong correlation between aspects of the Raman spectrum and low thermal conductivity. This presents Raman spectroscopy as a characteristic screening tool for potential thermoelectrics and is a crucial step toward predicting lattice thermal conductivities.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Slack, G. A. and Tsoukala, V. G., J. Appl. Phys. 76, 1665 (1994).Google Scholar
2 Sales, B. C., Mandrus, C., and Williams, R. K., Science 272, 1325 (1996).Google Scholar
3 Nolas, G. S., Cohn, J. L., and Slack, G. A., Phys. Rev. B. 58, 164 (1998).Google Scholar
4 Feldman, J. L., Singh, D. J., Mazin, I. I., Mandrus, D. and Sales, B. C., Phys. Rev. B 61, R9209 (2000).Google Scholar
5 Dong, Jianjun, Sankey, Otto F. and Myles, Charles W., Phys. Rev. Lett. 86, 2361 (2001).Google Scholar
6 Takizawa, H., Miura, K., Ito, M., Suzuki, T., and Endo, T., J. Alloys Compd. 282, 79 (1999).Google Scholar
7 Kliche, G. and Lutz, H. D., Infrared Phys. 24, 171 (1984).Google Scholar
8 Takizawa, H., Okazaki, K., Uheda, K., Endo, T. and Nolas, G. S., Mat. Res. Soc. Proc. 691, 37 (2001).Google Scholar
9 Nolas, G.S., Kendziora, C.A. and Takizawa, H., J. Appl. Phys. 95, 2004 in press.Google Scholar
10 Feldman, J. L. and Singh, D. J., Phys. Rev. B 53, 6273 (1996).Google Scholar
11 Lutz, H. D. and Kliche, D., Phys. Status Solidi B, 112, 549 (1982).Google Scholar
12 Nolas, G.S. and Kendziora, C.A., Phys. Rev. B 59, 6189 (1999).Google Scholar
13 Nolas, G. S., Takizawa, H., Endo, T., Sellinschegg, H. and Johnson, D. C., Appl. Phys. Lett. 77, 52 (2000).Google Scholar
14 Li, L.X., Liu, H., Wang, J.Y., Hu, X.B., Zhao, S.R., Jiang, H.D., Huang, Q.J., Wang, H.H. and Li, Z.F., Chem. Phys. Lett. 347, 373 (2001).Google Scholar
15 Feldman, J. L., Singh, D. J., Kendziora, C., Mandrus, D. and Sales, B. C., Phys. Rev. B 68, 094301 (2003).Google Scholar
16 Zawadowski, A. and Cardona, M., Phys. Rev. B 42, 10732 (1990).Google Scholar
17 Landau, L. D. and Lifshitz, E. M., Electrodynamics of Continuous Media (Pergamon, Oxford, 1960),Google Scholar
Klein, M. V. in Dynamical Properties of Solids 6, edited by Horton, G. K. and Maradudin, A. A. (North Holland, Amsterdam, 1990).Google Scholar