Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-20T19:27:50.598Z Has data issue: false hasContentIssue false

Photoconductive Polycrystalline Silicon Films on Glass Obtained by Hot-Wire CVD

Published online by Cambridge University Press:  10 February 2011

A. R. Middya
Affiliation:
Laboratoire de Physique des Interfaces et des Couches Minces, Ecole Polytechnique, CNRS UPR 0258, F-91128 Palaiseau Cedex, France
J. Guillet
Affiliation:
Laboratoire de Physique des Interfaces et des Couches Minces, Ecole Polytechnique, CNRS UPR 0258, F-91128 Palaiseau Cedex, France
J. Perrin
Affiliation:
Laboratoire de Physique des Interfaces et des Couches Minces, Ecole Polytechnique, CNRS UPR 0258, F-91128 Palaiseau Cedex, France
J. E. Bouree
Affiliation:
Laboratoire de Physique des Interfaces et des Couches Minces, Ecole Polytechnique, CNRS UPR 0258, F-91128 Palaiseau Cedex, France
Get access

Abstract

Textured polycrystalline silicon films with columnar structure have been deposited on glass at low temperature (400–550°C) and high deposition rate (10 to 15 Å/s) by hot-wire chemical vapour deposition using SiH4-H2 gases. The homogeneity of the deposited layer is ± 5% on a 8 cm diameter. As deposited films have a poor photoconductivity. However hydrogen confinement in the films during the deposition or after the deposition is found to be the key for obtaining g.tc/poly-Si with a significant diffusion length. Eventually reasonable values of the mobility lifetime product (> 10−7 cm2/V) are obtained by in situ hydrogen passivation of poly-Si films after deposition. Efficient shifting of the Fermi level is achieved by in situ B or P doping. The incorporation of boron in poly-Si network strongly influences the morphology and the crystalline structure. Undoped films have a Hall mobility of 14 ± 5 cm2/V.s which decreases versus the carrier concentration.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Werner, J. H., Bergman, R. and Brendel, R., in Advances in Solid State Physics. Vol.34, edited by Helbig, R. (Vieweg, Braunschweig, Wiesbaden, 1994) p. 115.Google Scholar
2. Yamauchi, N. and Reif, R., J. Appl. Phys. 75, 3235 (1994).Google Scholar
3. Finger, F., Hopke, P., Luysberg, M., Carius, R., Wagner, H. and Scheib, M., Appl. Phys. Lett. 65, 2588 (1994).Google Scholar
4. Shi, Z., Young, T. L., Zheng, G.F. and Green, M., Solar Energy Materials & Solar Cells 31, 51 (1993).Google Scholar
5. Matsumura, H., Hosoda, Y. and Furukawa, S. in Amorphous Silicon Technology - 1994, edited by Schiff, E. A., Thomson, M. J., Madan, A., Tanaka, K. and LeComber, P. G. (Mater. Res. Soc. Proc. 336, Pittsburgh, PA, 1994) pp. 3742.Google Scholar
6. Middya, A. R., Guillet, J., Perrin, J., LLoret, A. and Bouree, J. E. in 13th European Photovoltaic Solar Energy Conference. edited by Freiesleben, W., Palz, W., Ossenbrink, H.A. and Helm, P. (H.S. Stephens & Associates, Bedford, UK, 1995) pp. 17041707.Google Scholar
7. Middya, A. R., LLoret, A., Perrin, J., Huc, J., Moncel, J. L., Parey, J. Y. and Rose, G. in Amorphous Silicon Technology - 1995, edited by Schiff, E. A., Hack, M., Madan, A., Matsuda, A. and Powell, M. (Mater. Res. Soc. Proc. 377, Pittsburgh, PA, 1995) pp. 119124.Google Scholar
8. Puigdollers, J., Cifre, J., Polo, M.C., Asensi, J.M., Bertomeu, J. and Andreu, J., Appl. Surf. Sci. 86, 600 (1995)Google Scholar
9. Jackson, W. B., Johnson, N. M., Tsai, C. C., Wu, I. W., Chiang, A. and Smith, D., Appl. Phys. Lett. 61, 1670 (1992).Google Scholar