Hostname: page-component-84b7d79bbc-g5fl4 Total loading time: 0 Render date: 2024-07-29T05:25:46.417Z Has data issue: false hasContentIssue false

Photoemission Study of Low-Fluence, Non-Thermal Laser Damage of UHV-Cleaved Gallium Arsenide (110)

Published online by Cambridge University Press:  26 February 2011

S. S. Goldenberg
Affiliation:
Code 4686, Naval Research Laboratory, Washington, DC 20375–5000
J. P. Long
Affiliation:
Code 4686, Naval Research Laboratory, Washington, DC 20375–5000
M. N. Kabler
Affiliation:
Code 4686, Naval Research Laboratory, Washington, DC 20375–5000
Get access

Abstract

The pulsed-laser induced photochemical production of metallic Ga islands on the surface of GaAs cleaved, irradiated, and studied in ultrahigh vacuum (UHV) is documented through photoelectron spectroscopy and subsequent scanning electron microscopy. Ga islands are detected for laser fluences as low as 1 mJ/cm2, far below those previously reported for modification of GaAs, and for which the temperature rise is negligible.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Maki, P.A. and Ehrlich, D.J., Appl. Phys. Lett. 55, 91 (1989).Google Scholar
2. Ashby, C.I.H., Appl. Phys. Lett. 45, 892 (1984).Google Scholar
3. Danielzik, B., Harten, P., Seeger, T., and von der Linde, D., Appl. Phys. Lett 53, 816 (1988);Google Scholar
4 Namiki, A., Kawai, T., Yasuda, Y., and Nakamura, T., Jpn. J. of Appl. Phys. 24, 270 (1985).Google Scholar
5. Nakai, Y., Hattori, K., and Itoh, N., Appl. Phys. Lett. 56, 1980 (1990) .Google Scholar
6. Kumazaki, Y., Nakai, Y., and Itoh, N., Phys. Rev. Lett. 59, 2883 (1987).Google Scholar
7. Guidotti, D, Hasan, E., Hovel, H.J., and Albert, M., Appl. Phys. Lett. 50, 912 (1987) .Google Scholar
8. Raja, M.Y.A., Brueck, S.R.J., Usinski, M., and Mclnerney, J., Appl. Phys. Lett. 52, 625 (1988).Google Scholar
9. Campbell, I.H. and Fauchet, P.M., Appl. Phys. Lett. 57, 10 (1990).Google Scholar
10. Long, J.P., Nucl. Instr. Methods A266, 673 (1988).Google Scholar
11. Metalaser Technology, Inc., Pleasanton, CA.Google Scholar
12. Meyer, J.R., Kruer, M.R., and Bartoli, F.J., J. Appl. Phys. 51, 5513 (1980) .Google Scholar
13. Cao, Renyu, Miyano, K., Lindau, I., and Spicer, W.E., Thin Solid Films 181, 43 (1989).Google Scholar
14. Skeath, P., Lindau, I., Pianetta, P., Chye, P.W., Su, C.Y., and Spicer, W.E., J. Electr. Spectr. 17, 259 (1979).Google Scholar
15. Proix, F., Akremi, A., and Zhung, Z.T., J. Phys. C 16, 5449 (1983) .Google Scholar
16. Svensson, S.P., Kanski, J., and Andersson, T.G., Phys. Rev. B 30, 6033 (1984)Google Scholar
17. Chiang, T.T. and Spicer, W.E., J. Vac. Sci. Technol. A7, 724 (1989).Google Scholar
18. Long, J.P., Sadeghi, H.R., Rife, J.C., and Kabler, M.N., Phys. Rev. Lett. 64, 1158 (1990).Google Scholar