Hostname: page-component-848d4c4894-89wxm Total loading time: 0 Render date: 2024-07-06T12:23:18.208Z Has data issue: false hasContentIssue false

Photoluminescence from Silver Nanoparticles Enhanced by Surface Plasmon Resonance

Published online by Cambridge University Press:  31 January 2011

Oleg A Yeshchenko
Affiliation:
yes@univ.kiev.ua, Taras Shevchenko Kyiv University, Physics, Kyiv, Ukraine
Igor M. Dmitruk
Affiliation:
igor_dmitruk@mail.univ.kiev.ua, Taras Shevchenko Kyiv University, Physics, Kyiv, Ukraine
Alexandr A Alexeenko
Affiliation:
anatoliypinchuk@gmail.com, Gomel State Technical University, Laboratory of Technical Ceramics and Silicates, Gomel, Belarus
Losytskyy Yu. Mykhaylo
Affiliation:
apinchuk@oakton.edu, Taras Shevchenko Kyiv University, Physics, Kyiv, Ukraine
Andriy V. Kotko
Affiliation:
a.kotko@mail.ru, I.M. Frantsevich Institute for Problems of Materials Science, Kyiv, Ukraine
Anatoliy Pinchuk
Affiliation:
apinchuk@uccs.edu, University of Colorado at Colorado Springs, Physics, COLORADO SPRINGS, Colorado, United States
Get access

Abstract

The size dependence of the photoluminescence spectra from silver nanoparticles embedded in a silica host medium was observed. The quantum yield of the photoluminescence increased when the size of the nanoparticles was decreased. The quantum yield for 8 nm silver nanoparticle was estimated to be on the order of 10-2 which is 108 times higher than the one observed for bulk silver. The two photoluminescence bands observed from silver nanoparticles were rationalized as the radiative electron interband transitions and radiative decay of the surface plasmons in silver nanoparticles. The strong local electric field induced by the surface plasmon resonance in silver nanoparticles enhances the exciting and emitted photons and increases the quantum yield of the photoluminescence.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Kreibig, U. and Vollmer, M., Optical Properties of Metal Clusters (Springer, Berlin, Heidelberg, 1995).Google Scholar
2 Bohren, C. F. and Huffman, D. R., Absorption and scattering of light by small particle (Wiley, New York, 1998).Google Scholar
3 Ershov, B. G., Janata, E., Henglein, A., and Fojtik, A., Journal of Physical Chemistry 97, 4589 (1993).Google Scholar
4 Henglein, A.,Journal of Physical Chemistry 97, 5457 (1993).Google Scholar
5 Schatz, G., Young, M., and Duyne, R. Van, SURFACE-ENHANCED RAMAN SCATTERING: PHYSICS AND APPLICATIONS 103, 19 (2006).Google Scholar
6 Kundu, J., Le, F., Nordlander, P., and Halas, N., CHEMICAL PHYSICS LETTERS 452, 115 (2008).Google Scholar
7 Wenger, J., Lenne, P., Popov, E., Rigneault, H., Dintinger, J., and Ebbesen, T., OPTICS EXPRESS 13, 7035 (2005).Google Scholar
8 Whitney, A., Duyne, R. Van, and Casadio, F., JOURNAL OF RAMAN SPECTROSCOPY 37, 993 (2006).Google Scholar
9 Stuart, D., Yonzon, C., Zhang, X., Lyandres, O., Shah, N., Glucksberg, M., Walsh, J., and Duyne, R. Van, ANALYTICAL CHEMISTRY 77, 4013 (2005).Google Scholar
10 Hulteen, J., Young, M., and Duyne, R. Van, LANGMUIR 22, 10354 (2006).Google Scholar
11 Zhang, A. P., Zhang, J. Z., and Fang, Y., Journal of Luminescence 128, 1635 (2008).Google Scholar
12 Mertens, H. and Polman, A., APPLIED PHYSICS LETTERS 89 (2006).Google Scholar
13 Chen, S. W., Ingram, R. S., Hostetler, M. J., Pietron, J. J., Murray, R. W., Schaaff, T. G., Khoury, J. T., Alvarez, M. M., and Whetten, R. L., Science 280, 2098 (1998).Google Scholar
14 Ingram, R. S., Hostetler, M. J., Murray, R. W., Schaaff, T. G., Khoury, J. T., Whetten, R. L., Bigioni, T. P., Guthrie, D. K., and First, P. N., Journal of the American Chemical Society 119, 9279 (1997).Google Scholar
15 Apell, P., Monreal, R., and Lundqvist, S., Physica Scripta 38, 174 (1988).Google Scholar
16 Whittle, D. J. and Burstein, E., Bull. Am. Phys. Soc., 1981), vol. 26, p. 777.Google Scholar
17 A, Mooradia., Physical Review Letters 22, 185 (1969).Google Scholar
18 Yeshchenko, O. A., Dmitruk, I. M., Dmytruk, A. M., and Alexeenko, A. A., Materials Science and Engineering B-Solid State Materials for Advanced Technology 137, 247 (2007).Google Scholar
19 Gurin, V. S., Alexeenko, A. A., Yumashev, K. V., Prokoshin, R., Zolotovskaya, S. A., and Zhavnerko, G. A., Materials Science & Engineering C-Biomimetic and Supramolecular Systems 23, 1063 (2003).Google Scholar
20 Yeshchenko, O. A., Dmitruk, I. M., Alexeenko, A. A., and Dmytruk, A. M., Physical Review B 75 (2007).Google Scholar
21 Xie, F. T., Bie, H. Y., Duan, L. M., Li, G. H., Zhang, X., and Xu, J. Q., Journal of Solid State Chemistry 178, 2858 (2005).Google Scholar
22 Basak, D., Karan, S., and Mallik, B., Chemical Physics Letters 420, 115 (2006).Google Scholar
23 Akimov, A. V., Mukherjee, A., Yu, C. L., Chang, D. E., Zibrov, A. S., Hemmer, P. R., Park, H., and Lukin, M. D., Nature 450, 402 (2007).Google Scholar
24 Kosobukin, V. A., Physics Letters A 160, 584 (1991).Google Scholar
25 M, Fleischm., Hendra, P. J., and Aj, McQuilla., Chemical Physics Letters 26, 163 (1974).Google Scholar
26 Nie, S. M. and Emery, S. R., Science 275, 1102 (1997).Google Scholar
27 Fang, Y., Seong, N. H., and Dlott, D. D., Science 321, 388 (2008).Google Scholar
28 Ozbay, E., Science 311, 189 (2006).Google Scholar