Hostname: page-component-5c6d5d7d68-xq9c7 Total loading time: 0 Render date: 2024-08-11T08:21:55.561Z Has data issue: false hasContentIssue false

Pitting Corrosion in Two-Dimensional Aluminium Thin Layers

Published online by Cambridge University Press:  10 February 2011

L. Balázs
Affiliation:
Laboratoire de Physique de la Matière Condensde, Ecole Polytechnique, 91128 Palaiseau, France KFKI-Institute for Atomic Energy Research, P. 0. B. 49, H—1525 Budapest, Hungary
J-F. Gouyet
Affiliation:
Laboratoire de Physique de la Matière Condensde, Ecole Polytechnique, 91128 Palaiseau, France
Get access

Extract

We have investigated the influence of C1 and Fe3+ ions on the morphology of pits grown in aluminium thin films, under open circuit conditions. We observed various morphologies ranging from percolation-cluster-like patterns to dense holes with smooth perimeters. The experimental behavior has been appropriately simulated by a spreading percolation model with feed-back. This model reproduced all the morphologies observed and sustains the mechanisms proposed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mansfeld, F., ed., Corrosion Mechanisms (Marcel Dekker, New York, 1987).Google Scholar
2. Ford, F. P., Burstein, G. T. and Hoar, T. P., J. Electrochem. Soc. 127, 1325 (1980).Google Scholar
3. Burstein, G. T., Davis, D. H., J. Electrochem. Soc. 128, 33 (1981).Google Scholar
4. Burstein, G. T., Newman, R. C.,J. Electrochem. Soc. 128, 2270 (1981).Google Scholar
5. Frankel, G. S., Rush, B. M., Jahnes, C. V., Farrell, C.E., Davenport, A. J. and Isaacs, H. S. , J., Electrochem. Soc. 138, 643 (1991).Google Scholar
6. Szklarska-Smialowska, Z., Corrosion 27, 223 (1971).Google Scholar
7. Costa, J. M., Sagués, F. and Vilarassa, M., Corros. Sci. 32, 665 (1991).Google Scholar
8. Nagatani, T. Phys. Rev. A, 45, 2480 (1992).Google Scholar
9. Nagatani, T. Phys. Rev. A, 45, 6985 (1992)Google Scholar
10. Meakin, P., Jøssang, T. and Feder, J., Phys. Rev. E 48, 2906 (1993).Google Scholar
11. Reigada, R., Sagués, F. and Costa, J. M., J.Chem.Phys. 101, 2329 (1994).Google Scholar
12. Baumgärtner, M., Kaesche, H., Corros. Sci 29, 363 (1989).Google Scholar
13. Nagatani, T., Phys. Rev. Lett. 68, 1616 (1992).Google Scholar
14. Frankel, G.S., Corros. Sci 30, 1203 (1990).Google Scholar
15. Frankel, G.S., Dukovic, J. O., Brusic, V., Rush, B. M. and Jahnes, C. V., J. Electrochem. Soc. 139, 2196 (1992).Google Scholar
16. Balázs, L., Nyikos, L., Szabó, I. and Schiller, R., Fractals 1, 416 (1993).Google Scholar
17. Holten, T., Jøssang, T. T. Meakin, P. and Feder, J., Phys. Rev. E 50, 754 (1994).Google Scholar
18. Balázs, L., and Gouyet, J.F., Physica A 217, 319 (1995).Google Scholar
19. Sapoval, B., Rosso, M., Gouyet, J-F., in: The Fractal Approach to Heterogeneous Chemistry, Avnir, D., Ed. (John Wiley & Sons, 1989) p. 227.Google Scholar
20. Chandler, R., Koplik, J., Lerman, K., Willemsen, J., J. Fluid Mech. 119, 249 (1982).Google Scholar