Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-18T07:39:29.292Z Has data issue: false hasContentIssue false

Plasma Deposition of Wide Gap, Highly Photoconductive a-Si:H Thin Films from Disilane-Helium Mixtures

Published online by Cambridge University Press:  21 February 2011

G. Rajeswaran
Affiliation:
Division of Metallurgy and Materials Science Brookhaven National Laboratory, Upton, NY 11973.
P. E. Vanier
Affiliation:
Division of Metallurgy and Materials Science Brookhaven National Laboratory, Upton, NY 11973.
R. R. Corderman
Affiliation:
Division of Metallurgy and Materials Science Brookhaven National Laboratory, Upton, NY 11973.
F. J. Kampas
Affiliation:
Division of Metallurgy and Materials Science Brookhaven National Laboratory, Upton, NY 11973.
Get access

Abstract

Wide gap (>1.9 eV), photoconductive, intrinsic amorphous silicon films were made in a UHV system from Si2H6 -He mixtures. The hydrogen concentrations, optical gaps and photoconductivities were measured. Unlike films made from SiH4, Si2H6-produced films exhibit excellent electronic properties even at low deposition temperatures. The ratio of AM1 photoconductivity to dark conductivity was as high as 107.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kuwano, Y., Ohnishi, M., Nishiwaki, H., Tsuda, S., Fukatsu, T., Enomoto, K., Nakashima, Y., and Tarui, H., Proc. 16th IEEE Photovoltaic Specialists Conference, San Diego, 1982, pp. 1332–43.Google Scholar
2. Fan, J. C. C. and Palm, B. J., Solar Cells 10, 8198 (1983).Google Scholar
3. Morimoto, A., Miura, T., Kumeda, M., and Shimizu, T., J. Appl. Phys. 53, No. 11, 7299–305 (1982).Google Scholar
4. Scott, B. A., Reimer, J. A., and Longeway, P. A., J. Appl. Phys. 54, No. 12,6853–63 (1983).Google Scholar
5. Fritzsche, H., Solar Energy Materials 3, 447 (1980).Google Scholar
6. Zanzucchi, P. J., Wronski, C. R., and Carlson, D. E., J. Appl. Phys. 48, 5227 (1977).Google Scholar
7. S.Heavens, O., Optical Properties of Thin Solid Films(Butterworths, London, 1955).Google Scholar
8. Tomlin, S. G., J. Phys. D 1, 1667 (1968).Google Scholar
9. Tauc, J., Grigorovici, R., and Vancu, A., Phys. Status Solidi 15, 627 (1966).Google Scholar
10. Cody, C. D., Brooks, B. G., and Abeles, B., Solar Energy Materials 8, 231 (1982).Google Scholar
11. Brodsky, M. H., Cardona, M., and Cuomo, J. J., Phys. Rev. B 16, 3556 (1977).Google Scholar
12. Fang, C. J., Gruntz, K. J., Lay, L., Cardona, M., Demond, F. J., Muller, A., and Kalbitzer, S., J. Non-Cryst. Solids 35/36, 255 (1980).Google Scholar
13. pelahoy, A. E., Kampas, F. J., Corderman, R. R., Vanier, P. E., and Griffith, R. W., Proc. 16th IEEE Photovoltaics Specialists Conference, San Diego, 1982, pp. 1117.Google Scholar
14. Overhof, H. and Beyer, W., Phys. Status Solidi B 107, 207 (1981).CrossRefGoogle Scholar
15. Corderman, R. R. and Vanier, P. E., J. Appl. Phys. 54, 3987 (1983).Google Scholar
16. Vanier, P. E., Solar Cells 9, 85 (1983).CrossRefGoogle Scholar
17. Wronski, C. R., Abeles, B., Tiedje, T., and Cody, G. D., Solid State Commun. 44, 1423 (1982).CrossRefGoogle Scholar