Hostname: page-component-7479d7b7d-m9pkr Total loading time: 0 Render date: 2024-07-11T06:20:11.289Z Has data issue: false hasContentIssue false

Plasma Diagnostics During Pulsed Laser Deposition of Diamond-Like Carbon Using Single Crystal Graphite and Amorphous Carbon

Published online by Cambridge University Press:  10 February 2011

Y Yamagata
Affiliation:
Dept. of Electrical and Computer Engineering, Kumamoto Univ., Kumamoto 860-8555, Japan
A. Sharma
Affiliation:
NSF Center for Advanced Materials and Smart Structures, Dept. of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695-7916
J. Narayan
Affiliation:
Dept. of Electrical and Computer Engineering, Kumamoto Univ., Kumamoto 860-8555, Japan
R. M. Mayo
Affiliation:
Dept. of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695-7909
J. W. Newman
Affiliation:
Dept. of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695-7909
K. Ebihara
Affiliation:
Dept. of Electrical and Computer Engineering, Kumamoto Univ., Kumamoto 860-8555, Japan
Get access

Abstract

Optical emission study of ablation plasma plumes from single crystal graphite (SCG) and amorphous carbon (a-C) targets during the preparation of diamond-like carbon (DLC) films by KrF excimer pulsed laser deposition (PLD) has been investigated. The C I emission intensity increases with laser energy density (EL) increase, while the C2 emission changes drastically with EL for both ablated plasma plumes. The C2/C emission intensity ratio for the a-C plume decreases with EL increase, while the C2/C ratio for the SCG plume decreases with EL increase up to 3.0 J/cm2, then increases slightly with further EL increase Nanohardness of the DLC films decreases with the C2/C ratio increase. It is suggested that the C2 molecule in the plasma plume does not play an important role in producing high quality DLC films, and that the C2/C ratio is a good parameter to monitor the PLD process.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yamagata, Y., Sharma, A., Mayo, R. M., Newman, J. W., Narayan, J., Ebihara, K., J. Appl. Phys., 86, 4154 (1999).Google Scholar
2. Yamagata, Y., Sharma, A., Mayo, R. M., Newman, J. W., Narayan, J., Ebihara, K., J. Appl. Phys., to be submitted, (1999).Google Scholar
3. Harilal, S. S., Issac, Riju C., Bindhu, C. V, Gopinath, Pramond, Nampoori, V. P. N., and Vallabhan, C. P. G., Spectrochemica Acta Part A, 53, 1527 (1997).Google Scholar
4. Mayo, R. M., Newman, J. W., Sharma, A., Yamagata, Y., Narayan, J., J. Appl. Phys., 86, 2865 (1999).Google Scholar
5. Mayo, R. M., Newman, J. W., Sharma, A., Yamagata, Y., Narayan, J., J. Appl. Phys., to be submitted, (1999).Google Scholar
6. Merkulov, V. I., Lowndes, D. H., Jellison, G. E. Jr., Puretzky, A. A., Geohegan, D. B., Appl. Phys. Lett., 73, 2591 (1998); D. H. Lowndes, V. I. Merkulov, A. A. Puretzky, D. B. Geohegan, G. E. Jellison Jr., C. M. Rouleau, T. Thundat, Mat. Res. Soc. Symp. Proc. 526, 325 (1998).Google Scholar
7. Xiong, F., Wang, Y. Y., Leppert, V., and Chang, R. P. H., J. Mater. Res., 8, 2265 (1993).Google Scholar
8. Koivusaari, K. J., Levoska, J. and Leppavuori, S., J. Appl. Phys. 85, 2915 (1999).Google Scholar
9. Tabbal, M., Me'rel, P., Chaker, M., Khakani, M. A. El, Herbert, E. G., Lucas, B. N., O'Hern, M. E., J. Appl. Phys. 85, 3860 (1999).Google Scholar