Hostname: page-component-5c6d5d7d68-wtssw Total loading time: 0 Render date: 2024-08-22T04:24:53.044Z Has data issue: false hasContentIssue false

Plasma Potential Measurements and Strain Effects in Epitaxial GAN Grown on AlN Buffered Si(111) by Radio Frequency Reactive Sputtering

Published online by Cambridge University Press:  21 February 2011

W. J. Meng
Affiliation:
General Motors Research and Development Center, Warren, MI 48090
T. A. Perry
Affiliation:
General Motors Research and Development Center, Warren, MI 48090
Get access

Abstract

We have grown epitaxial GaN thin films on A1N buffered Si(lll) by radio frequency glow discharge sputtering. GaN growth direction strains and GaN E2 optical phonon energies are measured. At the same growth temperature, plasma potentials of the radio frequency glow discharge in which GaN is grown, GaN growth rate, and strain in GaN increase systematically as a function of increasing input power. The measured GaN E2 optical phonon energy scales with GaN lattice strain. Our results indicate the presence of significant intrinsic stresses in epitaxial GaN films and point to the importance of plasma characteristics in controlling the physical properties during plasma assisted thin film deposition.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Powell, R. C., Lee, N. E., Kim, Y. W., and Greene, J. E., J. Appl. Phys. 73, 189 (1993).Google Scholar
2. Lei, T., Ludwig, K. F., and Moustakas, T. D., J. Appl. Phys. 74, 4430 (1993).Google Scholar
3. Ross, J. and Rubin, M., Mater. Lett. 12, 215 (1991).Google Scholar
4. Hershkowitz, N., in Plasma Diagnostics, Vol. 1, edited by Auciello, O. and Flamm, D. L., Academic Press, Boston 1989, p. 113.Google Scholar
5. Godyak, V. A. and Piejak, R. B., J. Appl. Phys. 68, 3157 (1990).Google Scholar
6. Wang, E. Y., Hershkowitz, N., Intrator, T., and Forest, C., Rev. Sci. Instrum. 57, 2425 (1986).Google Scholar
7. Bell, B. C. and Glocker, D. A., J. Vac. Sci. Technol. A6, 2047 (1988).Google Scholar
8. Meng, W. J., Heremans, J., and Cheng, Y. T., Inst. Phys. Conf. Ser. No. 137, 409 (1994).Google Scholar
9. Meng, W. J., Sell, J. A., Perry, T. A., Rehn, L. E., and Baldo, P. M., J. Appl. Phys. 75, 3446 (1994).Google Scholar
10. Meng, W. J. and Perry, T. A., J. Appl. Phys. 76, 7824 (1994).Google Scholar
11. Sell, J. A., Meng, W. J., and Perry, T. A., J. Vac. Sci. Technol. A10, 1804 (1992).Google Scholar
12. Detchprohm, T., Hiramatsu, K., Itoh, K., and Akasaki, I., Jpn. J. Appl. Phys. 31, L1454 (1992).Google Scholar
13. Weinstein, B. A. and Zallen, R., in Light Scattering in Solids IV, edited by Cardona, M. and Guntherodt, G., Springer-Verlag, Berlin (1984), p. 463.Google Scholar