Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-21T16:22:27.414Z Has data issue: false hasContentIssue false

Point Defects Interaction with Extended Defects and Impurities and its Influences on the Si-SiO2 System Properties

Published online by Cambridge University Press:  01 February 2011

D. Kropman
Affiliation:
Maritime Academy, Mustakivi 25,13912 Tallin, Estonia, daniel.Kropman@mail.ee
U. Abru
Affiliation:
Tondi Electronics, Tallinn, Estonia
T. Kärner
Affiliation:
Departement of Physics, University of Tartu, Tartu, Estonia
U. Ugaste
Affiliation:
Departement of Natural Sciences, Tallinn University, Tallin, Estonia
E. Mellikov
Affiliation:
Technical University, Tallinn, Estonia
M. Kauk
Affiliation:
Technical University, Tallinn, Estonia
I. Heinmaa
Affiliation:
Institute of Chemical Physics and Biophysic, Tallinn, Estonia
A. Samoson
Affiliation:
Institute of Chemical Physics and Biophysic, Tallinn, Estonia
Get access

Abstract

The type and density of the point defects that are generated in the Si surface layer during thermal oxidation depend on the oxidation condition: tempertature, cooling rate, oxidation time, impurity content. The interaction between point defects with extended defects and impurities affect the Si-SiO2 interface properties. The influences of point defects may be diminished and the interface properties improved by an appropriate choice of oxidation conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Nishi, Y., jpn. J. Appl. Phys. 10, 52 (1971).Google Scholar
2 caplan, P.J., Poindexter, E.H., deal, B.E., Razoux, R.H., J.Appl.Phys. 50, 5847 (1979).Google Scholar
3 Kropman, D., Dolgov, S., Kämer, T., Appl.Phys. A62, 469 (1996).Google Scholar
4 Kropman, D., Kämer, T., Phys.Status Solidi (a) 136, 125 (1993).Google Scholar
5 Tan, T.Y., Gösele, U., Appl, Phys., A37, 1 (1985).Google Scholar
6 Lefevre, H., Appl.Phys.Lett. 22, 15 (1980).Google Scholar
7 Bourgoin, C., Phys.Lett. 106A, 140 (1984).Google Scholar
8 Voronkov, V., Private Communication (2004).Google Scholar