Hostname: page-component-5c6d5d7d68-pkt8n Total loading time: 0 Render date: 2024-08-06T14:28:01.505Z Has data issue: false hasContentIssue false

Point Defects Migration and Agglomeration in Si at Room Temperature: The Role of Surface and Impurity Content

Published online by Cambridge University Press:  15 February 2011

V. Privitera
Affiliation:
CNR-IMETEM, Stradale Primosole 50,195121 Catania, (Italy)
S. Coffa
Affiliation:
CNR-IMETEM, Stradale Primosole 50,195121 Catania, (Italy)
K. Kyllesbech Larsen
Affiliation:
Philips Research Laboratory, Eindhoven, The Netherlands
S. Libertino
Affiliation:
INFM and Dipartimento di Fisica, Università di Catania, Corso Italia 57,195129 Catania (Italy)
G. Mannino
Affiliation:
INFM and Dipartimento di Fisica, Università di Catania, Corso Italia 57,195129 Catania (Italy)
F. Priolo
Affiliation:
INFM and Dipartimento di Fisica, Università di Catania, Corso Italia 57,195129 Catania (Italy)
Get access

Abstract

Our recent work on the room temperature migration and trapping phenomena of self-interstitials and vacancies in crystalline Si is reviewed. Spreading resistance profiling and deep level transient spectroscopy measurements were used to monitor the interaction of ion beam generated defects with dopant atoms, intrinsic impurities (i.e. O and C), pre-existing defect marker layers and sample surface. We have found that both interstitials and vacancies undergo fast long range migration which is interrupted by trapping at impurities and by recombination at defects or at the surface. Effective defect migration lengths as large as 5 μm at room temperature have been observed in highly pure, defect free epitaxial Si samples. A lower limit of 1×10−10 cm2/sec for the room temperature diffusivity of self-interstitials has been determined. Furthermore, by monitoring the migration and interaction processes of point defects injected through a mask, we have established that surface acts as an effective sink for the migrating Si self interstitials.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

National Technology Roadmap for Semiconductors (Semiconductor Industry Association, San Jose, 1995).Google Scholar
Fahey, P.M., Griffin, P.B. and Plummer, J.D., Rev. Mod. Phys. 61, 289 (1989).Google Scholar
3. Morehead, F.F. and Lever, R.F., Appl. Phys. Lett. 48, 151 (1986).Google Scholar
4. Sedgwick, T.O., Michel, A.E., Deline, V.R., Cohen, S.A. and Lasky, J.B., J. Appl. Phys. 63, 1452 (1988).Google Scholar
5. Cowern, N.E.B., Appl. Phys. Lett. 64, 2646 (1994).Google Scholar
6. Eaglesham, D.J., Stolk, P.A., Gossmann, H.J. and Poate, J.M., Appl. Phys. Lett. 65, 2305 (1994).Google Scholar
7. Watkins, G.D., these proceedingsGoogle Scholar
8. Car, R., Kelly, P.J., Oshiyama, A., and Pantelides, S.T., Phys. Rev. Lett. 52, 1814 (1984).Google Scholar
9. Gilmer, G., Diaz de la Rubia, T., Stock, D.M. and Jaraiz, M., Nucl. Instrum. Meth. B 102, 29 (1995).Google Scholar
10. Tang, M., Colombo, L., Zhu, J., and Diaz de la Rubia, T., to be published.Google Scholar
11. Taylor, W., Marioton, B.P.R., Tan, T.Y. and Gosele, U., Rad. Eff. And Defects in Solids 111–112, 131 (1989).Google Scholar
12. Gossmann, H.J., Rafferty, C.S., Luftman, H.S., Unterwald, F.C., Boone, T. and Poate, J.M., Appl. Phys. Lett. 63, 639 (1993).Google Scholar
13. Bronner, G.B. and Plummer, J. D., J. Appl. Phys. 61, 5286 (1987).Google Scholar
14. Watkins, G.D. and Corbett, J.W., Phys. Rev. 134, A1359 (1964).Google Scholar
15. Corbett, J.W. and Watkins, G.D., Phys. Rev. 138, A555 (1965).Google Scholar
16. Kyllesbech Larsen, K., Privitera, V., Coffa, S., Priolo, F., Campisano, S.U. and Camera, A., Phys. Rev. Lett. 76, 1493 (1996).Google Scholar
17. Privitera, V., Coffa, S., Priolo, F., Kyllesbech Larsen, K., and Mannino, G. Appl. Phys. Lett. 68, 3422 (1996).Google Scholar
18. Svensson, B.G., Jagadish, C. and Williams, J.S., Phys. Rev. Lett. 71, 1860 (1993).Google Scholar
19. Christensen, C., Petersen, J.W. and Nylandsted Larsen, A., Appl. Phys. Lett. 61, 1426 (1992).Google Scholar
20. Coffa, S., Privitera, V., Priolo, F., Libertino, S. and Mannino, G., J. Appl. Phys. 81, 1639 (1997).Google Scholar
21. Biersack, J.B. and Haggmark, L.G., Nucl. Instr. Meth. 174, 257 (1980).Google Scholar
22. Cowern, N.E.B., Appl. Phys. Lett. 64, 2646 (1994).Google Scholar
23. Vandervorst, W., Clarysse, T., De Wolf, P., Hellemans, L., Snauwaert, J., Privitera, V. and Raineri, V., Nucl. Instr. Meth. B 96, 123 (1995).Google Scholar
24. Brotherton, S.D and Bradley, P., J. Appl. Phys. 53, 5720 (1982).Google Scholar
25. Libertino, S., Coffa, S., Privitera, V., and Priolo, F., Mat. Res. Soc. Symp. Proc. 468, (1997).Google Scholar