Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T12:07:03.514Z Has data issue: false hasContentIssue false

Polarization Dependent Conductivity in Thin Film Pzt Capacitors

Published online by Cambridge University Press:  25 February 2011

Stephen E. Bernacki*
Affiliation:
Raytheon Company, Equipment Division, 528 Boston Post Road, Sudbury, MA 01776
Get access

Abstract

Polarization dependent conductivity is a dependence of the low field non switching steady state conduction current through a metal ferroelectric metal (MFM) thin film capacitor on the remanent polarization state of the capacitor. This paper proposes a simple theoretical model based on Schottky barrier formation due to PZT-platinum work function differences and barrier height modulation due to remanent polarization. The model predicts a conduction current dependence on both remanent polarization state and electrode material. Finally, we present experimental data in qualitative agreement with the model.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Scott, J. F., Araujo, C. A., Melnick, B. M., McMillan, L. D. and Zuleeg, R., J. Appl. Phys. 70 (1), 382 (1 July 1991).Google Scholar
2. Melnick, B. M., Araujo, C. A., McMillan, L. D., Carver, D. A. and Scott, J. F., Ferroelectrics, 116, 79 (1991).Google Scholar
3. Moazzami, R., Hu, C. and Shepherd, W. H., IEEE International Reliability Physics Symposium Digest, 231 (1990).Google Scholar
4. Sudhama, C., Carrano, J. C., Parker, L. H., Chikarmane, V., Lee, J. C., Tasch, A. F., Miller, W., Abt, N. and Shepherd, W. H. in Ferroelectric Thin Films, edited by Myers, E. R. and Kingon, A. I. (Mater. Res. Soc. Proc. 200, Pittsburgh, PA 1990) pp. 331336.Google Scholar
5. Bullington, J. A., Ivey, M. D. and Evans, J. T., Proceedings of the First Symposium on Integrated Ferroelectrics, Colorado Springs, 1989, p. 201ff.Google Scholar
6. Thakoor, S., Thakoor, A. P. and Bernacki, S. E., presented at the Third International Symposium on Integrated Ferroelectrics, Colorado Springs, 1991 (unpublished).Google Scholar
7. Land, C. E., J. Am. Ceram. Soc. 72, 2059 (1989).Google Scholar
8. Gerson, R. and Jaffe, H., J. Phys. Chem. Solids, 24, 979 (1963).Google Scholar
9. Sze, S. M., Physics of Semiconductor Devices, (John Wiley and Sons, New York, 1969), p. 363ff.Google Scholar
10. Milnes, A. G., Semiconductor Devices and Integrated Electronics, (Van Norstrand Reinhold, New York, 1980) p. 85ff.Google Scholar
11. Mandurah, M. M., Saraswat, K. C., Helms, C. R. and Kamins, T. I., J. Appl. Phys. 51 (11), 5755 (November 1980).Google Scholar
12. Mandurah, M. M., Saraswat, K. C. and Kamins, T. I., J. Electrochem. Soc. 126 (6), 1019 (1979).Google Scholar
13. Brennon, C. J., presented at the Third International Symposium on Integrated Ferroelectrics, Colorado Springs, 1991, (to be published in Ferroelectrics).Google Scholar
14. Fridkin, V. M., Ferroelectric Semiconductors, (Consultants Bureau, New York, 1980), p. 299ff.Google Scholar