Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-18T22:28:03.105Z Has data issue: false hasContentIssue false

Polymeric Based Conducting Nanocomposites: Controlling The Distribution of the Conducting Phase

Published online by Cambridge University Press:  10 February 2011

Richard. A. Vaia
Affiliation:
Air Force Materials Directorate, AFRLIMLBP, Bldg 654, 2941 P St, WPAFB, OH 45433
Jar-Wha Lee
Affiliation:
Syscom Technology, Inc., Hilliard, OH 43026
William Click
Affiliation:
University of Dayton Research Institute, Dayton, OH 45469
Gary Price
Affiliation:
University of Dayton Research Institute, Dayton, OH 45469
Chyi-Shan Wang
Affiliation:
University of Dayton Research Institute, Dayton, OH 45469
Get access

Abstract

The optimization of bulk properties of polymeric based nano– and mesoscale composites require the ability to spatially control phase distribution. In this study, electrical conductivity is introduced by incorporation of a metal precursor via infiltration into the polymer host and subsequent conversion in–situ by a reducing agent, templating the morphology of the polymer matrix. Distribution of nano– and mesoscale metal particles in isotropic and anisotropic swollen polymer hosts is discussed relative to metal precursor and reducing reagent diffusion and their in–situ bimolecular reduction reaction. The swelling and infiltration procedure employed to form the composites is generally applicable to rigid–rod, semi–flexible and flexible polymer matrices and not restricted to special synthesis of metal containing or complexing polymers. As an example, high–performance rigid–rod polymer fibers containing an interpenetrating network of polymer microfibrils and silver are produced with d.c. conductivities in excess of 104 S/cm and tensile

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 New World Vistas, Air and Space Power for the 21st Century, USAF Scientific Advisory Board, US Air Force Office of Scientific Research, Bolling AFB, DC.Google Scholar
2 Global Assessment of R&D Status and Trends in Nanoparticles, Nanostructured Materials, and Nanodevices, International Technology Research Institute, Loyola College in Maryland, Baltimore, MD.Google Scholar
3 Whiteside, G.M; Mathias, J.P.; Seto, C.T. Science, 1991, 254, 1312 10.1126/science.1962191Google Scholar
4 Ozin, G. A. Adv. Mater. 1992, 4, 612.10.1002/adma.19920041003Google Scholar
5 Godovski, D.Y. Advances in Polymer Science, 1995, 119, 79.10.1007/BFb0021281Google Scholar
6 Philp, D.; Stoddart, J.F. Angew. Chem., Int. Ed. Engl. 1996, 35 10.1002/anie.199611541Google Scholar
7 Stauffer, D; Aharony, A. Introduction to Percolation Theory, Taylor & Francis, London 1992 Google Scholar
8 Sahimi, M. Applications of Percolation Theory, Taylor & Francis, London, 1994.Google Scholar
9 For example see (a) Fendler, J.H. Adv. Mater. 1995, 7, 607 and references contained within. (b) Spatz, J.P.; Sheiko, S.; Moller, M. Macromol. 1996, 29, 3220. (c) Taleb, A.; Petit, C.; Pileni, M.P. Chem. Mater. 1997, 9, 950.10.1002/adma.19950070703Google Scholar
10 For example see (a) Okada, A.; Usuki, A. Mat. Sci. Eng: C, 1995, 3, 109. (b) Vaia, R.A.; Ishii, H.; Giannelis, E.P. Chem. Mater. 1993, 5, 1694. (c) Giannelis, E.P. Adv. Mater. 1996, 8, 29 and references contained within. (d) Krishnamoorti, R.; Vaia, R.A.; Giannelis, E.P. Chem. Mater.,1996, 8, 1728Google Scholar
11 For example see (a) Bradley, J.S. Clusters and Colloids, From Theory to Applications; Schmid, G. Ed.; VCH Publications, Inc. New York, 1994. (b) Martino, A.; Yamanaka, S.A.; Kawola, J.S.; Loy, D.A. Chem. Mater. 1997, 9, 423 and references contained within. (c) Stockton, W.; Lodge, J.; Rachford, F.; Orman, M.; Falco, F.; Schoen, P. J. Appl. Phys.1991, 70, 4679. (d) Pileni, M.P. Langmuir, 1997, 13, 3266.Google Scholar
12 For example see (a) Seregenia, M.V.; Bronstein, L.M.; Platonova, O.A.; Chernyshov, D.M.; Valetsky, P.M.; Hartmann, J.; Wenz, E.; Antonietti, M. Chem. Mater. 1997, 9, 923. (b) Sankaran, V.; Yue, J.; Cohen, R.E.; Schrock, R.R.; Silbey, R.J. Chem. Mater. 1993, 5, 1133. (c) Moffitt, M.; Eisenberg, A. Chem. Mater. 1995, 7, 1178 and 1185. (d) Ng Cheong Chan, Y.; Craig, G.S.W.; Schrock, R.R.; Cohen, R.E. Chem. Mater. 1992, 4, 885. (e) Ishizu, K., Yamada, Y.; Saito, R.; Kanbara, T.; Yamamoto, T. Polymer, 1993, 34, 2256.10.1021/cm960469mGoogle Scholar
13 For example see (a) Ogawa, M.; Kuroda, K. Chem.Rev. 1995, 95, 399. (b) Schollhorn, R. Chem. Mater. 1996, 8, 1747. (c) Hulteen, J.C.; Martin, C.R. J. Mater. Chem. 1997, 7, 1075.10.1021/cr00034a005Google Scholar
14 Dee, G.T.; Manring, L.E.; Mazur, S. J. Phys. Chem. 1987, 91, 6699. Dee, G.T. Phys. Rev. Let. 1986, 57, 275.10.1021/j100311a029Google Scholar
15 Shewmon, P. Diffusion in Solids, TMS, Warrendale, PA, 1989.Google Scholar
16 Baur, J.; Mather, P.; Lee, J.-W.; Wang, C.-S.; Vaia, R.A. unpublished resultsGoogle Scholar
17 For related work on metallization of polyimides see (a) Caplan, M. L. Southward, R. E. Thompson, D. W., and St.Clair, A. K., Proc. Am. Chem. Soc., Div. Polym. Mater. Sci. Eng. 1994, 71, 787. (b) R. E. Southward, D. W. Thompson, and A. K. St. Clair, Chem. Mater., 1997,9,501.Google Scholar
18 Cohen, Y., and Thomas, E. L., Polym. Eng. Sci., 1985, 25, 1093.10.1002/pen.760251708Google Scholar
19 Wolfe, J. R., Loo, B. H., and Arnold, F. E., 1981, 14, 915; W. W. Adams, R. K. Eby and D. E. Mclemore (editors), Mat. Res. Soc. Symp. Proc., 134 (1988). S. A. Fawaz, A. N. Palazotto and C. S. Wang, Polymer, 1992, 33, 100.Google Scholar
20 Jenekhe, S. A., and Tibbetts, S. T., J. Polymer Sci., 1988, B26, 201. S. A. Jenekhe and P. O. Johnson, Macromol. 1990, 23, 4419.Google Scholar
21 Lee, J.W.; Wang, C.S.; Vaia, R.A. US Patent Application Serial No. 60/071,779.Google Scholar
22 Vaia, R.A.; Lee, J.W.; Wang., C.S.; Click, W.; Price, G. submitted Chem. Mater, 1998 Google Scholar
23 Ashby, M.F.; Jones, D.R. H. Engineering Materials: An Introduction to Microstructures, Processing and Design, Pergamon Press, New York, 1986 Google Scholar
24 Mechanical properties were determined for a series of fibers (5) mounted on one inch paper tabs with fast setting epoxy using an Instron Universal Testing Machine (model 1122). The fiber diameters were determined using the Nikon Metaphot optical microscope. Conductivities were determined from 2-point probe measurement of single fibers.Google Scholar