Hostname: page-component-7479d7b7d-8zxtt Total loading time: 0 Render date: 2024-07-11T08:28:09.158Z Has data issue: false hasContentIssue false

Porous Silicon Structural Evolution from In-Situ Luminescence and Raman Measurements

Published online by Cambridge University Press:  10 February 2011

D. R. Tallant
Affiliation:
Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185-1411
M. J. Kelly
Affiliation:
Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185-1411
T. R. Guilinger
Affiliation:
Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185-1411
R. L. Simpson
Affiliation:
Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185-1411
Get access

Abstract

We performed in-situ photoluminescence and Raman measurements on an anodized silicon surface in the HF/ethanol solution used for anodization. The porous silicon thereby produced, while resident in HF/ethanol, does not immediately exhibit intense photoluminescence. Intense photoluminescence develops spontaneously in HF/ethanol after 18–24 hours or with replacement of the HF/ethanol with water. These results support a quantum confinement mechanism in which exciton migration to traps and nonradiative recombination dominates the de-excitation pathways until silicon nanocrystals are physically separated and energetically decoupled by hydrofluoric acid etching or surface oxidation. The porous silicon surface, as produced by anodization, shows large differences in photoluminescence intensity and peak wavelength over millimeter distances. Parallel Raman measurements implicate nanometer-size silicon particles in the photoluminescence mechanism.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Canham, L. T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
2. Cullis, A. G. and Canham, L. T., Nature 353, 335 (1991).Google Scholar
3. Gardelis, S., Rimmer, J. S., Dawson, P., Hamilton, B., Kubiak, B. R., Whall, T. E. and Parker, E. H. C., Appl. Phys. Lett. 59, 2118 (1991).Google Scholar
4. Buren, T. Van, Gao, Y., Tiedje, T., Dahn, J. R. and Way, B. M., Appl. Phys. Lett. 60, 3013 (1992).Google Scholar
5. Bhat, S. V., Jayaram, K., Muthu, D. V. S. and Sood, A. K., Appl. Phys. Lett. 60, 2116 (1992).Google Scholar
6. Tsai, C., Li, K.-H., Kinosky, D. S., Qian, R.-Z.,Hsu, T.-C., Irby, J. T., Banerjee, S. K., Tasch, A. F., Campbell, J. C., Hance, B. K. and White, J. M., Appl. Phys. Lett. 60, 1700 (1992).Google Scholar
7. Brandt, M. S., Fuchs, H. D., Stutzmann, M., Weber, J. and Cardona, M., Solid State Commun. 81, 307 (1992).Google Scholar
8. Pollak, F. H., Test and Measurement World, May, 1985, pp. 2–10.Google Scholar
9. Sui, Z., Leong, P. P., Herman, I. P., Higashi, G. S. and Temkin, H., Appl. Phys. Lett. 60(17) 2086–8 (1992).Google Scholar
10. Tsu, R., Shen, H. and Dutta, M., Appl. Phys. Lett. 60(1), 112–4 (1992).Google Scholar
11. Tallant, D. R., Headley, T. J., Medernach, J. W. and Geyling, F., Mat. Res. Soc. Symp. Proc., Vol.324, 255 (1994).Google Scholar
12. Olego, D. J. and Baumgart, H., J. Appl. Phys. 63(8), 2669 (1988).Google Scholar
13. Teschke, O., Alvarez, F., Tessler, L. and Kleinke, M. V., Appl. Phys. Lett. 63(14), 1927 (1993).Google Scholar
14. Cao, W. and Hunt, A. J., Appl. Phys. Lett. 64(18), 2377–9, (1994).Google Scholar
15. Zhang, Q., Bayliss, S. C. and Hutt, D. A., Appl. Phys. Lett. 66(15), 1977–9 (1995).Google Scholar