Hostname: page-component-5c6d5d7d68-sv6ng Total loading time: 0 Render date: 2024-08-09T08:15:26.839Z Has data issue: false hasContentIssue false

Porphyrin Assembly with Fullerenes for Photovoltaic Applications

Published online by Cambridge University Press:  01 February 2011

Takashi Sagawa
Affiliation:
t-sagawa@iae.kyoto-u.ac.jp, Kyoto University, Institute of Advanced Energy, Gokasho, Uji, 611-0011, Japan, +81774384580, +81774383508
Osamu Yoshikawa
Affiliation:
o-yoshi@iae.kyoto-u.ac.jp, Kyoto University, Institute of Advanced Energy, Gokasho, Uji, 611-0011, Japan
Hirokuni Jintoku
Affiliation:
066d8328@gsst.stud.kumamoto-u.ac.jp, Kumamoto University, Department of Applied Chemistry and Biochemistry, 2-39-1 Kurokami, Kumamoto, 860-8555, Japan
Makoto Takafuji
Affiliation:
takafuji@chem.chem.kumamoto-u.ac.jp, Kumamoto University, Department of Applied Chemistry and Biochemistry, 2-39-1 Kurokami, Kumamoto, 860-8555, Japan
Hirotaka Ihara
Affiliation:
ihara@kumamoto-u.ac.jp, Kumamoto University, Department of Applied Chemistry and Biochemistry, 2-39-1 Kurokami, Kumamoto, 860-8555, Japan
Susumu Yoshikawa
Affiliation:
s-yoshi@iae.kyoto-u.ac.jp, Kyoto University, Institute of Advanced Energy, Gokasho, Uji, 611-0011, Japan
Get access

Abstract

Morphologically controllable thin-films of a zinc-containing tetraphenylporphyrin (ZnTPP) combined with an L-glutamide lipid has been fabricated and complexation of ZnTPP with fullerene was examined for organic thin-film solar cells, which gave 3 times enhancement of solar energy-to-electricity conversion efficiency through chlorobenzene-annealing in comparison with the conversion efficiency of untreated one.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. McDermott, G., Prince, S. M., Freer, A. A., Hawthornthwaite-Lawless, A. M., Papiz, M. Z., Cogdell, R. J., and Isaaca, N. W., Nature 374, 517 (1995); A. N. Melkozernov, J. Barber, and R. E. Blankenship, Biochemistry 45, 331 (2006); A. Egawa, T. Fujiwara, T. Mizoguchi, Y. Kakitani, Y. Koyama, and H. Akutsu, Proc. Natl. Acad. Sci. USA 104, 790 (2007).Google Scholar
2. Sagawa, T., Fukugawa, S., Yamada, T., and Ihara, H., Langmuir, 18, 7223 (2002).Google Scholar
3. Fuhrhop, J.H., Demoulin, C., Boettcher, C., Köning, J., and Siggel, U., J. Am. Chem. Soc. 114, 4159 (1992); A. P. H. J. Schenning, F. B. G. Benneker, H. P. M. Geurts, X. Y. Liu, and R. J. M. Nolte, ibid. 118, 8549 (1996); K. Sugou, K. Sasaki, K. Kitajima, T. Iwaki, and Y. Kuroda, ibid. 124, 1182 (2002); C. Ikeda, E. Fujiwara, A. Satake, and Y. Kobuke, Chem. Commun. 2003, 616; D. Monti, V. Cantonetti, M. Venanzi, F. Ceccacci, C. Bombelli, and G. Mancini, ibid. 2004, 972; S. C. Doan, S. Shanmugham, D. E. Aston, and J. L. McHale, J. Am. Chem. Soc. 127, 5885 (2005); R. F. Kelley, R. H. Goldsmith, and M. R. Wasielewski, ibid. 129, 6384 (2007); F. J. M. Hoeben, M. Wolffs, J. Zhang, S. D. Feyter, P. Leclère, A. P. H. J. Schenning, and E. W. Meijer, ibid. 129, 9819 (2007).Google Scholar
4. Koeppe, R., Sariciftci, N. S., Troshin, P. A., and Lyubovskaya, R. N., Appl. Phys. Lett. 89, 244102 (2006); R. Marczak, V. Sgobba, W. Kutner, S. Gadde, F. D.Souza, and D. M. Guldi, Langmuir 23, 1917 (2007); V. Sgobba, G. Giancane, S. Conoci, S. Casilli, G. Ricciardi, D. M. Guldi, M. Prato, and L. Valli, J. Am. Chem. Soc. 129, 3148 (2007).Google Scholar
5. Ihara, H., Hachisako, H., Hirayama, C., and Yamada, K., Chem. Commun. 1992, 1244.Google Scholar
6. Hayakawa, A., Yoshikawa, O., Fujieda, T., Uehara, K., and Yoshikawa, S., Appl. Phys. Lett. 90, 163517 (2007).Google Scholar
7. Litvinov, A. L., Konarev, D. V., Kovalevsky, A. Y., Neretin, I. S., Coppens, P., and Lyubovskaya, R. N., Crystal Growth & Design, 5, 1807 (2005).Google Scholar