Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-16T10:22:35.305Z Has data issue: false hasContentIssue false

Positron Annihilation Studies of Vacancy Formation in Tungsten, Chromium, and Niobium**

Published online by Cambridge University Press:  25 February 2011

L. C. Smedskjaer
Affiliation:
Materials Science and Technology Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
G. D. Loper
Affiliation:
Materials Science and Technology Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
M. K. Chason*
Affiliation:
Materials Science and Technology Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
R. W. Siegel
Affiliation:
Materials Science and Technology Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
*
Now at: Motorola Corporation, Schaumburg, Illinois 60196, USA
Get access

Abstract

Vacancy formation was studied in the refractory bcc metals, tungsten, chromium, and niobium, using the positron annihilation spectroscopy Doppler broadening technique, between room temperature and the respective melting temperatures, under ultra-high vacuum conditions. Temperatures were measured by optical and infrared pyrometry, a W(Rh) thermocouple, and the power delivered to the sample, with calibrations against known melting temperatures. For W, a trapping-model analysis of the data from the temperature range 300–3633 K yielded a vacancy formation enthalpy of 3.76 ± 0.39 eV. For Cr, a similar fit to the data from 296–2049 K yielded a vacancy formation enthalpy of 2.0 ± 0.2 eV. The results are discussed in relation to previous vacancy formation and self-diffusion studies. Measurements on Nb as a function of temperature and oxygen content are also presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Permanent address: Physics Department, Wichita State University, Kansas 67208, USA

**

This work was supported by the U.S. Department of Energy.

References

** This work was supported by the U.S. Department of Energy.Google Scholar
1. Siegel, R. W., in Point Defects and Defect Interactions in Metals, edited by Takamura, J. et al. (University of Tokyo, Tokyo, 1982) p. 533.Google Scholar
2. Mundy, J. N., Hoff, H. A., Pelleg, J., Rothman, S. J., and Nowicki, L. J., Phys. Rev. B 24, 658 (1981).10.1103/PhysRevB.24.658Google Scholar
3. Maier, K., Peo, M., Saile, B., Schaefer, H. E., and Seeger, A., Phil. Mag. A 40, 701 (1979).10.1080/01418617908234869CrossRefGoogle Scholar
4. Schaefer, H. E., in Positron Annihilation, edited by Coleman, P. G. et al. (North-Holland, Amsterdam, 1982) p. 369.Google Scholar
5. Rasch, K.-D., Siegel, R. W., and Schultz, H., Phil. Mag. A 41, 91 (1980).10.1080/01418618008241833Google Scholar
6. Park, J. Y., Huang, H.-C. W., Siegel, R. W., and Balluffi, R. W., Phil. Mag. A 48, 397 (1983).10.1080/01418618308234901CrossRefGoogle Scholar
7. Mundy, J. N., Rothman, S. J., Lam, N. Q., Hoff, H. A., and Nowicki, L. J., Phys. Rev. B 18, 6566 (1978).10.1103/PhysRevB.18.6566CrossRefGoogle Scholar
8. Fluss, M. J., Chason, M. K., Lerner, J. L., Legnini, D. G., and Smedskjaer, L. C., Appl. Phys. 24, 67 (1981).10.1007/BF00900401Google Scholar
9. Smedskjaer, L. C., Fluss, M. J., Legnini, D. G., Chason, M. K., and Siegel, R. W., J. Phys. F: Metal Phys. 11, 2221 (1981).10.1088/0305-4608/11/11/005Google Scholar
10. Smedskjaer, L. C., Fluss, M. J., and Legnini, D. G., J. Nucl. Instrum. Meth. Phys. Res. B 4, 196 (1984).10.1016/0168-583X(84)90059-4Google Scholar
11. Siegel, R. W., Fluss, M. J., and Smedskjaer, L. C., these Proceedings.Google Scholar
12. Campbell, J. L. and Schulte, C. W., Appl. Phys. 19, 149 (1979).10.1007/BF00932389Google Scholar
13. Johansson, J., Vehanen, A., Yli-Kauppila, J., Hautojärvi, P., and Moser, P., Rad. Effects Lett. 58, 31 (1981).10.1080/01422448108226525Google Scholar
14. Balluffi, R. W., J. ucl. Mater. 69 & 70, 240 (1978).Google Scholar
15. Gupta, R. P. and Siegel, R. W., J. Phys. F: Metal Phys. 10, L7 (1980).10.1088/0305-4608/10/1/002Google Scholar
16. Puska, M. J. and Nieminen, R. M., J. Phys. F: Metal Phys. 13, 333 (1983).10.1088/0305-4608/13/2/009Google Scholar
17. Seilemann, R., Metzner, H., Butt, R., Klaumünzer, S., Haas, H., and Vogl, G., Phys. Rev. B 25, 5555 (1982).10.1103/PhysRevB.25.5555Google Scholar