Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-20T12:29:26.187Z Has data issue: false hasContentIssue false

Possibility of Self-Trapped Excitons in Silicon Nanocrystallites

Published online by Cambridge University Press:  15 February 2011

G. Allan
Affiliation:
Institut d'Electronique et de Microélectronique du Nord, Département Institut Supérieur d'Electroniquedu Nord, 41 boulevard Vauban, 59046 Lille Cédex, France, gal@isen.fr
C. Delerue
Affiliation:
Institut d'Electronique et de Microélectronique du Nord, Département Institut Supérieur d'Electroniquedu Nord, 41 boulevard Vauban, 59046 Lille Cédex, France, gal@isen.fr
M. Lannoo
Affiliation:
Institut d'Electronique et de Microélectronique du Nord, Département Institut Supérieur d'Electroniquedu Nord, 41 boulevard Vauban, 59046 Lille Cédex, France, gal@isen.fr
Get access

Abstract

We present semi-empirical tight-binding and ab-initio local density calculations demonstrating the (meta)stability of self-trapped excitons in silicon nanocrystallites. These are obtained not only for surface dimer bonds passivated for instance by hydrogen atoms or by silicon oxide but also for “normal” nearest-neighbors bonds. Light emission from these trapped excitons is predicted in the infrared or in the visible. We are thus led to the interpretation that part of the luminescence is due to such localized states while optical absorption is characteristic of quantum confinement effects. These conclusions should extend to other semiconductor crystallites.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Canham, L.T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
2 Proot, J.J.P., Delerue, C. and Allan, G., Appl. Phys. Lett. 61, 1948 (1992). C. Delerue, G. Allan and M. Lannoo, Phys.Rev.B 48, 11024 (1993).Google Scholar
3 Vial, J. C., Bsiesy, A., Gaspard, F., Hérino, R., Ligeon, M., Muller, F., Romestain, R., Macfarlane, Phys. Rev. B 45, 14171 (1992).Google Scholar
4 Calcott, P.D.J., Nash, K.J., Canham, L.T., Kane, M.J., and Brumhead, D., I. Phys.: Condensed Matter 5, L91 (1993).Google Scholar
5 Lockwood, D.J., Solid State Communications 92, 101 (1994).Google Scholar
6 Martin, E., Delerue, C., Allan, G. and Lannoo, M., Phys.Rev.B 50, 18258 (1994).Google Scholar
7 Koch, F., Petrova-Koch, V. and Muschik, T., Journal of Luminescence 57, 271 (1993).Google Scholar
8 Meyer, B.K., Hofmann, D.M., Stadler, W., Petrova-Koch, V., Koch, F., Omling, P. and Emanuelsson, P., Appl. Phys. Lett. 63, 2120 (1993).Google Scholar
9 Mauri, F. and Car, R., Phys. Rev. Lett. 75, 3166 (1995).Google Scholar
10 Vinchon, T., Spanjaard, D., Desjonqueres, M.C., J. of Phys.C: Condensed Matter 4, 5061 (1992).Google Scholar
11 DMol User Guide, version 2.3.5. San Diego: Biosym Technologies, 1993.Google Scholar
12 Delley, B., J.Chem.Phys. 92, 508 (1990).Google Scholar
13 For very small crystallites (diameter < 14 Å, < 71 Si atoms), the system in its excited state relaxes in highly distorted configurationswith low symmetries. Details will be given in a paper specific to these small crystallites.Google Scholar
14 The bandgap calculated in ref. [2] for the same crystallite with 123 silicon atoms is equal to 3.18 eV. We obtain here a smaller value because the present TB parametrization does not give a bulk silicon band structure as good as in ref. [2] where a non-orthogonal basis was used.Google Scholar
15 Schuppler, S., Friedman, S.L, Marcus, M.A, Adler, D.L., Xie, Y.H., Ross, F.M., Harris, T.D., Brown, W.L., Chabal, V.J., Brus, L.E. and Citrin, P.H., Phys. Rev. Lett. 72, 2648 1994.Google Scholar
16 Allan, G., Delerue, C. and Lannoo, M., Phys. Rev. B 48, 7951, (1993).Google Scholar
17 Pasquarello, A., Hybertsen, M.S., Car, R., Phys.Rev.Lett. 74, 1024 (1995).Google Scholar
18 Vincent, G. and Bois, D., Solid State Commun. 27,431 (1978).Google Scholar