Hostname: page-component-7bb8b95d7b-qxsvm Total loading time: 0 Render date: 2024-09-30T16:15:23.125Z Has data issue: false hasContentIssue false

Preparation and Characterization of High Porosity Si02 Xerogels for Low k Dielectrics

Published online by Cambridge University Press:  10 February 2011

M. T. Colomer*
Affiliation:
Water Chemistry Program, University of Wisconsin-Madison, 660 North Park Street, Madison, Wisconsin 53706
Get access

Abstract

Due to its low dielectric constant, high porosity SiO2 is a potential intermetal dielectric (IMD) film for sub-half micron devices. High porosity SiO2 xerogels with a low dielectric constant were prepared by a sol-gel method. Basic and mixtures of SiO2 sols (acid/base) aqueous particulate suspensions were employed using TEOS as a precursor.

Porosity values up to 55% could be obtained for the silica xerogels calcined at 250°C. The porosity values were estimated by means of nitrogen adsorption (BET). The dielectric constant was directly measured using an impedance analyzer and also calculated from the nitrogen adsorption measurements. Both techniques were in good agreement and resulted in a dielectric constant value of 2.32 for xerogels having the highest porosity.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hrubesh, L.W., Keene, L.E. and Latorre, V.R., J. Mater. Res. 8 (1993) 1736.10.1557/JMR.1993.1736Google Scholar
2. Hrubesh, L.W. and Poco, J.F., J. Non-Cryst. Solids 188 (1995) 46.10.1016/0022-3093(95)00028-3Google Scholar
3. Smith, D.M., Anderson, J., Cho, C.C. and Gnade, B.E., Mater. Res. Soc. Symp. Proc. Vol. 371, 1995, pp. 261.10.1557/PROC-381-261Google Scholar
4. Cho, C.C., Smith, D.M., Anderson, J., Mater. Chem. and Physics 42 (1995) 91 10.1016/0254-0584(95)01569-8Google Scholar
5. Jo, M- H., Hong, J- K., Park, H- H., Kim, J.J., Hyun, S- H., Microelectronic Engineer. 33 (1997) 343.10.1016/S0167-9317(96)00063-9Google Scholar
6. Hong, J- K., Yang, H- S., Jo, M- H., Park, H- H., Choi, S- Y., Thin Solid Films 308–309 (1997) 495.10.1016/S0040-6090(97)00486-0Google Scholar
7. Monk, D.J. and Soane, D.S., in Wong, C.P. (ed.), Polymers for Electronics and Photonic Applications, Academic Press, Boston, 1993, p. 119.10.1016/B978-0-12-762540-9.50007-2Google Scholar
8. Brinker, C.J., Ward, T.L., Sehgal, R., Raman, N.K., Hietala, S.L., Smith, D.M., Hua, D.W. and Heedeley, T.J., J. Memb. Sci., 77 (2/3) (1993) 165.10.1016/0376-7388(93)85067-7Google Scholar
9. Klein, L.C. and Giszpenc, N., Am. Ceram. Soc. Bull., 69 (1990) 1821.Google Scholar
10. Larbot, A., Julbe, A., Guizard, C. and Cot, L., J. Memb. Sci., 44 (1989) 289.10.1016/S0376-7388(00)83359-1Google Scholar
11. Chu, L., Tejedor-Tejedor, M.I. and Anderson, M.A., Mater. Res. Soc. Symp. Proc. Vol. 346, Materials Research Society, 1994.Google Scholar
12. Gregg, S.J. and Sing, K.S.W., Adsorption, Surface Area and Porosity (Academic Press, New York, 1982).Google Scholar
13. Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J.Y., Siemieniewska, T., Appl. Chem. 57 (4) (1985) 603.10.1351/pac198557040603Google Scholar
14. Henning, S. and Svenson, L., Phys. Scripta, 23 (1981) 697.10.1088/0031-8949/23/4B/018Google Scholar