Hostname: page-component-5c6d5d7d68-ckgrl Total loading time: 0 Render date: 2024-08-22T08:41:34.613Z Has data issue: false hasContentIssue false

Preparation of Yba2Cu3O7-X. Superconducting Thin Films by Means of Single Target Rf-Sputtering+

Published online by Cambridge University Press:  28 February 2011

Herman D.L. Weyten
Affiliation:
University of Antwerp (UIA), Dept. of Chemistry, Universiteitspleln 1, B‐2610 Wllrijk, Belgium
R. De Batist
Affiliation:
University of Antwerp (RUCA), Middelheimlaiin 1, B‐2020 Antwerp, Belgium
P. Nagels
Affiliation:
University of Antwerp (RUCA), Middelheimlaiin 1, B‐2020 Antwerp, Belgium
J. Cornelis
Affiliation:
S.C.K./C.E.N., Materials Development Dept., Boeretang 200, B‐2400 Mol, Belgium
Get access

Abstract

High Tc superconducting thin films have been deposited on sapphire by means of RF‐sputtering from a single stoichiometric target of YBa2Cu3O7x composition. The YBa2Cu3O7x films were deposited in an argon‐oxygen atmosphere on a substrate which reached a temperature of s 400°C during deposition. The study of stoichiometry and homogeneity of the as‐deposited films, by means of electromicroprobe analysis (EMPA), was used to optimize the sputtering parameters of the system. To achieve superconductivity, with an onset of s 90 K, a high‐temperature, post‐deposition thermal treatment in oxygen was necessary. Resistivity measurements show that, with respect to the bulk samples, zero resistivity is lowered as a result of substrate interaction. The use of buffer layers can improve the quality of the superconducting thin films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Bednorz, J.G. and Miiller:, K.A. Z. Phys. B64 (1986) 189.Google Scholar
2 Wu, M.K., Ashburn, J.R., Torng, C.J., Hor, P.H., Meng, R.L., Gao, L., Huang, Z.J., Wang, Y.Q. and Winn:, C. Phys. Rev. Lett. 58 (1987) 908.Google Scholar
3 Chu, C.W., Hor, P.H., Meng, R.L., Gao, L., Huang, Z.J. and Wang:, Y.Q. Phys. Rev. Lett. 58 (1987) 405.Google Scholar
4 Michikami, O., Asano, H., Katoh, Y., Kubo, S. and Tanabe:, K. Jpn. J. Appl. Phys. 167 (1987) L1199.Google Scholar
5 Adachi, H., Setsune, K., Mitsuyu, T., Hirochi, K., Ichikawa, Y., Kamada, T. and Wasa:, K. Jpn. J. Appl. Phys. 265 (1987) L709.Google Scholar
6 Aida, T., Fukazawa, T., Takagi, K. and Miyauchi:, K. Jpn. J. Appl. Phys. 269 (1987) L1489.Google Scholar
7 Venkatesan, T., Chase, E.W., Wu, R.O., Inam, A., Chang, C.C. and Shohoohi:, F.K. Appl. Phys. Lett. 53 (1988) 243.Google Scholar
8 Cornells, J., Vansummeren, J., Blermans, F., Ooms, H., Van den Bosch, A. and De Batist:, R. Sil. Ind. 910 (1989) 147.Google Scholar
9 Gilbert, L.R., Messier, R., Roy:, R. Thin Solid Films 54 (1987) 129.Google Scholar
10 Evetts, J.E., Semekh:, R.E. Thin Solid Films 174 (1989) 165.Google Scholar