Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T11:09:28.061Z Has data issue: false hasContentIssue false

Processing Relationships in YBa2Cu3O7−x Superconductors

Published online by Cambridge University Press:  28 February 2011

W. J. Heber
Affiliation:
Pacifie Northwest Laboratory, P. 0. Box 999, Richland, WA 99352
L. R. Pederson
Affiliation:
Pacifie Northwest Laboratory, P. 0. Box 999, Richland, WA 99352
G. D. Maupin
Affiliation:
Pacifie Northwest Laboratory, P. 0. Box 999, Richland, WA 99352
E. J. Leblanc
Affiliation:
Pacifie Northwest Laboratory, P. 0. Box 999, Richland, WA 99352
Get access

Abstract

Samples of YBa2Cu3O7−x were prepared by solid state reaction of Y2O3, BaO2, and CuO powders mixed in stoichiometric proportions. Powders reacted at 900°C-925°C in air were pressed at 35 MPa into rectangular bars and sintered at 950°C in air for six hours. Slow cooling at 50°C/hour promoted complete transformation to the orthorhombic structure. The effects of subsequent oxidation processing on superconducting properties were also investigated. Oxidation anneals at one atmosphere pressure in flowing O2over the temperature range from 300 to 550°C were performed. Results indicate that oxidation at 450°C optimized the superconducting transition temperature at 91K with a 2-degree transition width. Subsequent high-pressure oxidation (2000 psi O2) at 200°C for one week significantly degraded the superconducting characteristics. Results based on i udometric titration, thermogravimetric analysis, and x-ray photoelectron spectroscopy suggest that the copper valency is about 2.3 and oxygen stoi chiometry is 6.94 (x = 0.06) in samples processed to optimize superconducting properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bednorz, J. G. and Mueller, K. A., Z. Phys. B., 64, 189 (1986).Google Scholar
2. Wu, M. K., Ashburn, J. R., Torng, C. J., Hor, P. H., Meng, R. L., Gao, L., Jo Huang, Z., Wang, Y. Q., and Chu, C. W., Phys. Rev. Lett., 58, 908 (1987).Google Scholar
3. Cava, R. J., Batlogg, B., van Dover, R. B., Murphy, D. W., Sunshine, S., Siegrist, T., Rietman, J. P., Zahurak, S., and Espinosa, G. P., Phys. Rev. Lett., 58, 1676 (1987).Google Scholar
4. Rao, C. N. R., Ganguly, P., Raychaudhuri, A. K., Mohan Ram, R. A., and Sreedhar, K., Nature, 326, 856 (1987).Google Scholar
5. Takayama-Muromachi, E., Uchida, Y., Matsui, Y., and Kato, K., Jap. J. App. Phys., 26, L476 (1987).Google Scholar
6. Panson, A. J., Braginski, A. I., Gavaler, J. R., Hulm, J. K., Janocko, M. A., Pohl, H. C., Stewart, A. M., Talvacchio, J., and Wagner, G. R., Phys. Rev. B, 35, 8774 (1987).Google Scholar
7. Greedan, J. E., O'Reilly, A. H., and Stager, C. V., Phys. Rev. B, 35, 8770 (1987).Google Scholar
8. Grant, P. M., Beyers, R. B., Engler, E. M., Lím, G., Parkin, S. S. P., Ramirez, M. L., Lee, V. Y., Nazzal, A., Vazquez, J. E., and Savoy, R. J., Phys. Rev. B, 35, 7242 (1987).Google Scholar
9. Jorgensen, J. D., Beno, M. A., Hinks, D. G., Soderholm, L., Volin, K. J., Hitterman, R. L., Grace, J. D., Schuller, I. K., Segre, C. U., Zhang, K., and Kleefisch, M. S., Phys. Rev. B, 36, 3608 (1987).Google Scholar
10. Weber, W. J., Pederson, L. R., Maupin, G. D., and LeBlanc, E. J., in Atomic and Molecular Processing of Electronic and Ceramic Materials, edited by Stoebe, T. G. and McVay, G. L. (Mat. Res. Soc. Proc, Pittsburgh, PA 1987) In Press.Google Scholar
11. Harris, D. C. and Hewston, T. A., J. Solid State Chem., 69, 182 (1987).Google Scholar