Hostname: page-component-7bb8b95d7b-lvwk9 Total loading time: 0 Render date: 2024-09-13T04:20:15.605Z Has data issue: false hasContentIssue false

Pulsed Electrodeposition of Tree-Like Copper Aggregates

Published online by Cambridge University Press:  03 September 2012

Y. HuttEl
Affiliation:
Laboratoire de Physique de la Matière Condensée, CNRS-Ecole Polytechnique, 91128 Palaiseau, France
E. Chassaing
Affiliation:
Centre d'Etudes de Chimie Métallurgique-CNRS, 94407 VITRY-SUR-SEINE Cedex, France
M. Rosso
Affiliation:
Laboratoire de Physique de la Matière Condensée, CNRS-Ecole Polytechnique, 91128 Palaiseau, France
B. Sapoval
Affiliation:
Laboratoire de Physique de la Matière Condensée, CNRS-Ecole Polytechnique, 91128 Palaiseau, France
Get access

Abstract

Using pulsating current technique, we have been able to grow self-sustained, tree-like copper aggregates with a length of a few mm. The size of these aggregates allowed us to perform impedance and scanning electron microscope analysis. The morphology of the aggregates is found to be more compact than for deposits obtained in fixed-current dc conditions. However, their structure is still very irregular, and depends on the parameters characterizing the pulse sequence.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Witten, T.A. and Sander, L.M., Phys. Rev. Lett. 47, 1400 (1981).Google Scholar
2 Mandelbrot, B.B., The Fractal Geometry of Nature, (Freeman, San Francisco, 1982).Google Scholar
3 Matsushita, M., Sano, M., Hayakawa, Y., Honjo, H. and Sawada, Y., Phys. Rev. Lett. 53, 286 (1984); R.M. Brady and R.C. Ball, Nature, 309, 225 (1984).Google Scholar
4 Chazalviel, J.-N., Fleury, V. and Rosso, M., in Trends in Electrochemistry, p.231 (ed. by the Council of Research Integration, Research Trends, India, 1992), and references therein.Google Scholar
5 Kahanda, G.L.M.K.S. and Tomkiewicz, M., J. Electrochem. Soc. 137, 3423 (1990).Google Scholar
6 Hibbert, D.B. and Melrose, J.R., Phys. Rev. A38, 1036 (1988).Google Scholar
7 Melrose, J.R. and Hibbert, D.B., Phys. Rev. A40, 1727 (1989).Google Scholar
8 Imre, A., Vértesy, Z., Pajkossy, T. and Nyikos, L., Fractals 1, 59 (1993).Google Scholar
9 Fleury, V., J. Mater. Res. 6, 1169 (1991).Google Scholar
10 Chassaing, E., Rosso, M., Sapoval, B., and Chazalviel, J.-N., Electrochimica Acta 38, 1941 (1993).Google Scholar
11 Rosso, M., Chazalviel, J.-N., Fleury, V. and Chassaing, E., Electrochimica Acta1 39, 507 (1994).Google Scholar
12 Melrose, J.R. and Hibbert, D.B., in Fractal aspects of materials, ed. by Kaufman, J.H., Martin, J.E. and Schmidt, P.W., Mat. Res. Soc. Extended Abstracts, p. 257 (1989).Google Scholar
13 Deng, Y. and Pritzker, M., J. Electroanal. Chem. 336, 25 (1992).Google Scholar
14 Rosso, M., Fleury, V., Chazalviel, J.-N., Sapoval, B. and Chassaing, E., in Fractal structure and dynamics, ed. by Stokes, J.P. and Robins, M.O., Mat. Res. Soc. Extended Abstracts, p.245 (1990).Google Scholar
15 Sapoval, B., Gutfraind, R., Meakin, P., Keddam, M. and Takenouti, H., Phys. Rev. E48, 3333 (1993)Google Scholar
16 Chassaing, E. and Sapoval, B., J. Electrochem. Soc. 141, 2711 (1994).Google Scholar
17 Sapoval, B., Phys. Rev. Lett., in print.Google Scholar