Hostname: page-component-84b7d79bbc-c654p Total loading time: 0 Render date: 2024-07-29T21:21:53.066Z Has data issue: false hasContentIssue false

Quantum Dot Long-Wavelength Detectors

Published online by Cambridge University Press:  21 March 2011

Pallab Bhattacharya
Affiliation:
Solid State Electronics Laboratory, Department of Electrical Engineering and Computer Science, University of Michigan Ann Arbor, MI 48109-2122, U.S.A.
Adrienne D. Stiff-Roberts
Affiliation:
Solid State Electronics Laboratory, Department of Electrical Engineering and Computer Science, University of Michigan Ann Arbor, MI 48109-2122, U.S.A.
Sanjay Krishna
Affiliation:
Center for High Technology Materials, Department of Electrical Engineering and Computer Engineering, University of New Mexico Albuquerque, NM 87106, U.S.A.
Steve Kennerly
Affiliation:
Sensors and Electron Devices Directorate, U. S. Army Research Laboratory Adelphi, MD 20783, U.S.A.
Get access

Abstract

Long-wavelength infrared detectors operating at elevated temperatures are critical for imaging applications. InAs/GaAs quantum dots are an important material for the design and fabrication of high-temperature infrared photodetectors. Quantum dot infrared photodetectors allow normal-incidence operation, in addition to low dark currents and multispectral response. The long intersubband relaxation time of electrons in quantum dots improves the responsivity of the detectors, contributing to better hightemperature performance. We have obtained extremely low dark currents (Idark = 1.7 pA, T = 100 K, Vbias = 0.1 V), high detectivities (D* = 2.9×108cmHz1/2/W, T = 100 K, Vbias = 0.2 V), and high operating temperatures (T = 150 K) for these quantum-dot detectors. These results, as well as infrared imaging with QDIPs, will be described and discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Berryman, K. W., Lyon, S. A., and Segev, M., “Mid-infrared photoconductivity in InAs quantum dotsAppl. Phys. Lett., 70, pp. 18611863, 1997.Google Scholar
2. Phillips, J., Kamath, K., and Bhattacharya, P., “Far-infrared photoconductivity in self-organized InAs quantum dotsAppl. Phys. Lett., 72, pp. 20202022, 1998.Google Scholar
3. Kim, S., Mohseni, H., Erdtmann, M., Michel, E., Jelen, C., and Razeghi, M., “Growth and characterization of InGaAs/InGaP quantum dots for mid-infrared photoconductive detectorAppl. Phys. Lett., 73, pp. 963965, 1998.Google Scholar
4. Maimon, S., Finkman, E., and Bahir, G., “Intersublevel transitions in InAs/GaAs quantum dots infrared photodetectorsAppl. Phys. Lett., 73, pp. 20032005, 1998.Google Scholar
5. Pan, D., Towe, E., and Kennerly, S., “Normal-incidence intersubband (In, Ga)As/GaAs quantum dot infrared photodetectorsAppl. Phys. Lett., 73, pp. 19371939, 1998.Google Scholar
6. Xu, S. J., Chua, S. J., Mei, T., Wang, X. C., Zhang, X. H., Karunasiri, G., Fan, W. J., Wang, C. H., Jiang, J., Wang, S., and Xie, X. G., “Characteristics of InGaAs quantum dot infrared photodetectorsAppl. Phys. Lett., 73, pp. 31533155, 1998.Google Scholar
7. Zhuang, Q. D., Li, J. M., Li, H. X., Zeng, Y. P., Pan, L., Chen, Y. H., Kong, M. Y., and Lin, L. Y., “Intraband absorption in the 8–12 ?mu;m band from Si-doped vertically aligned InGaAs/GaAs quantum-dot superlatticeAppl. Phys. Lett., 73, pp. 37063708, 1998.Google Scholar
8. Weber, A., Gauthier-Lafaye, O., Julien, F.H., Brault, J., Gendry, M., Désieres, Y., and Benyattou, T., “Strong normal-incidence infrared absorption in self-organized InAs/InAlAs quantum dots grown on InP(001)Appl. Phys. Lett., 74, pp. 413415, 1999.Google Scholar
9. Phillips, J., Bhattacharya, P., Kennerly, S. W., Beekman, D. W., and Dutta, M., “Self-Assembled InAs-GaAs Quantum-Dot Intersubband DetectorsIEEE J. Quantum Electron., 35, pp. 936943, 1999.Google Scholar
10. Chu, L., Zrenner, A., Böhm, G., and Abstreiter, G., “Normal-incident intersubband photocurrent spectroscopy on InAs/GaAs quantum dotsAppl. Phys. Lett., 75, pp. 35993601, 1999.Google Scholar
11. Pan, D., Towe, E., and Kennerly, S., “Photovoltaic quantum-dot infrared detectorsAppl. Phys. Lett., 76, pp. 33013303, 2000.Google Scholar
12. Liu, H. C., Gao, M., McCafferey, J., Wasilewski, Z. R., and Fafard, S., “Quantum dot infrared photodetectorsAppl. Phys. Lett., 78, pp. 7981, 2001.Google Scholar
13. Wang, Y., Lin, S. D., Wu, H. W., and Lee, C. P., “Low dark current quantum-dot infrared photodetectors with an AlGaAs current blocking layerAppl. Phys. Lett., 78, pp. 10231025, 2001.Google Scholar
14. Rogalski, A., “Assessment of HgCdTe photodiodes and quantum well infrared photoconductors for long wavelength focal plane arraysInfrared Phys. & Technol., 40, pp. 279294, 1999.Google Scholar
15. Rogalski, A., Infrared Detectors, pp. 155650, Gordon and Breach Science Publishers, Australia, 2000.Google Scholar
16. Levine, B.F., “Quantum-well infrared photodetectorsJ. Appl. Phys., 74, pp. R1–R81, 1993.Google Scholar
17. Gunapala, S. D. and Bandara, K. M. S. V., “Recent Developments in Quantum-Well Infrared PhotodetectorsThin Films, 21, pp. 113237, 1995.Google Scholar
18. Singh, J., “Possibility of room temperature intra-band lasing in quantum dot structures placed in high-photon density cavitiesIEEE Photon. Technol. Lett., 8, pp. 488490, 1996.Google Scholar
19. Klotzkin, D., Kamath, K., and Bhattacharya, P., “Quantum capture times at room temperature in high-speed In0.4Ga0.6As-GaAs self-organized quantum-dot lasersIEEE Photon. Technol. Lett., 9, pp. 13011303, 1997.Google Scholar
20. Urayama, J., Norris, T. B., Singh, J., and Bhattacharya, P., “Temperature dependent carrier dynamics in InGaAs self-assembled quantum dotsPhys. Rev. Lett., 86, pp. 4930–, 2001.Google Scholar
21. Klotzkin, D. and Bhattacharya, P., “Temperature dependence of dynamic and dc characteristics of quantum dot and quantum well lasers: A comparative studyIEEE J. of Lightwave Technol., 17, pp.1634–, 1999.Google Scholar
22. Sosnowski, T., Norris, T., Jiang, H., Singh, J., Kamath, K., and Bhattacharya, P., “Rapid carrier relaxation in In0.4Ga0.6As/GaAs quantum dots characterized by differential transmission spectroscopyPhys. Rev. B-Condensed Matter, 57, pp. R9423–, 1998.Google Scholar
23. Mukai, K., Ohtsuka, N., Shoji, H., and Sugawara, M., “Emission from discrete levels in self-formed InGaAs/GaAs quantum dots by electric carrier injection: influence of phonon bottleneckAppl. Phys. Lett., 68, pp. 3013–, 1996.Google Scholar
24. Stiff, A. D., Krishna, S., Bhattacharya, P., and Kennerly, S., “High-detectivity, normal-incidence, mid-infrared (∼4 μm) InAs/GaAs quantum-dot detector operating at 150 KAppl. Phys. Lett., 79, pp. 421423, 2001.Google Scholar
25. Stiff, A. D., Krishna, S., Bhattacharya, P., and Kennerly, S., “Normal-Incidence, High-Temperature, Mid-Infrared, InAs/GaAs Vertical Quantum-Dot Infrared PhotodetectorIEEE J. of Quant. Electron., 37, pp. 14121419, 2001.Google Scholar