Hostname: page-component-5c6d5d7d68-wp2c8 Total loading time: 0 Render date: 2024-09-01T11:29:00.627Z Has data issue: false hasContentIssue false

Quantum Transport Through Intermolecular Nanotube Junctions

Published online by Cambridge University Press:  15 March 2011

Alper Buldum
Affiliation:
Department of Physics and Astronomy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599
Jian Ping Lu
Affiliation:
Department of Physics and Astronomy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599
Get access

Abstract

Quantum transport properties of intermolecular nanotube contacts are investigated. We find that atomic structure in the contact region plays important roles and resistance of contacts varies strongly with geometry and nanotube chirality. Nanotube end-end contacts have low resistance and show negative differential resistance (NDR) behavior. Exerting small pressure/force between the tubes can dramatically decrease contact resistance, if the contact is commensurate. Significant variation and nonlinearity of contact resistance may lead to new device applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. er, J. W. G. Wildö, Venema, L. C., Rinzler, A. G., Smalley, R. E. and Dekker, C., Nature 391, 5962 (1998).Google Scholar
2. Odom, T. W., Huang, J. L., Kim, P. and Lieber, C. M., Nature 391, 6264 (1998).Google Scholar
3. Collins, P. G., Zettl, A., Bando, H., Thess, A. and Smalley, R. E., Scienc 278, 100103 (1997).Google Scholar
4. Tans, S. J. et al. , Nature 386, 474477 (1998).Google Scholar
5. Bockrath, M. et al. , Science 275, 19221925 (1997).Google Scholar
6. Tans, S. J., Verschueren, A. R. M., Dekker, C., Nature 393, 4952 (1998).Google Scholar
7. Hu, J., Ouyang, M., Peidong, Y. and Lieber, C. M., Nature 399, 4851 (1999).Google Scholar
8. Yao, Z., Postma, H. W. C., Balents, L. and Dekker, C., Nature 402, 273276 (1999).Google Scholar
9. Chico, L., Crespi, V. H., Benedict, L. X., Louie, S. G., and Cohen, M. L., Phys. Rev. Lett. 76, 971974 (1996).Google Scholar
10. LeBlanc, O. H. Jr., J. Chem. Phys. 35, 1275 (1961); 36,1082(E) (1962).Google Scholar
11. Gelfand, M. P. and Lu, J. P., Phys. Rev. Lett. 68, 10501053, (1992).Google Scholar
12. Datta, S. S., Electronic Transport in Mesoscopic Systems, (Cambridge University Press, Cambridge, 1995).Google Scholar
13. Garcia-Moliner, F. and Velasco, V. R., Physics Reports 200, 83 (1991).Google Scholar
14. Nardelli, M. B., Phys. Rev. B 60, 78287833 (1999).Google Scholar
15. Delaney, P., Choi, H. J., Ihm, J., Louie, S. G. and Cohen, M. L., Nature 391, 466468 (1998).Google Scholar
16. For examples please see Streetman, B. G., Solid State Electronic Devices, (Prentice Hall, New Jersey, 1995).Google Scholar
17. Falvo, M. R., Taylor, R. M., Helser, A., Chi, V., Brooks, F. P., Washburn, S., Superfine, R., Nature 397, 236238 (1999).Google Scholar
18. Buldum, A., Lu, J. P., Phys. Rev. Lett. 83, 50505053 (1999).Google Scholar
19. Brenner, D. W., Phys. Rev. B 42, 94589471 (1990).Google Scholar
20. Fuhrer, M. S. et al. , Physica E 6, 868871, (2000).Google Scholar