Hostname: page-component-84b7d79bbc-5lx2p Total loading time: 0 Render date: 2024-07-25T23:28:46.013Z Has data issue: false hasContentIssue false

Raman Scattering Study of H2O2-Etched Zn0.1Cd0.9Te Surfaces

Published online by Cambridge University Press:  10 February 2011

Brajesh K. Rai
Affiliation:
Department of Physics, University of Puerto Rico, Rio Piedras, P.O. Box 23343, Puerto Rico 00931–3343, USA.
R. S. Katiyar
Affiliation:
Department of Physics, University of Puerto Rico, Rio Piedras, P.O. Box 23343, Puerto Rico 00931–3343, USA.
K. -T. Chen
Affiliation:
Department of Physics, Fisk University, Nashville, TN 37208, USA.
H. Chen
Affiliation:
Department of Physics, Fisk University, Nashville, TN 37208, USA.
A. Burger
Affiliation:
Department of Physics, Fisk University, Nashville, TN 37208, USA.
Get access

Abstract

Raman study of as-grown and H2O2-etched surfaces of Zn0.1Cd0.9 Te single crystal has been performed. A distribution of Te precipitates on the surface of as-grown ZCT, which increases after etching, has been encountered. With high irradiation powers, due to the oxidation of the surfaces, new bands of TeO32− are evolved. A downward shift in the peak position, as well as a halfwidth broadening, of all Raman modes has been observed with increasing laser power. The phenomenon, due to the formation of insulating oxide of tellurium in a dispersion of Te precipitates and vice-versa, has been attributed to the quantum confinement of phonons.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rai, Brajesh K., Kattiyar, R. S., Chen, K. -T., and Burger, A., to be communicated to Appl. Phys. Letts.Google Scholar
2. Efros, Al. L. and Efros, A. L., Fiz. Tekh. Poluprovodn. 16, 1209 (1982) [Sov. Phys. Semicond. 16, 772 (1982)].Google Scholar
3. Capasso, F., Sirtori, C., and Cho, A. Y., IEEE J. Quantum Electron. 22, 1853 (1986).Google Scholar
4. Willims, V. S., Olbright, G. R., Fluegel, B. D., Koch, S. W., Peyghambarian, N., J. Mod. Op. 35, 1979 (1988).Google Scholar
5. Sochinskii, N. V., Serrano, M. D., Diéguez, E., Agulló-Rueda, F., pal, U., Piqueras, J. and Fernández, P., J. Appl. Phys 77, 2806 (1995).Google Scholar
6. Espinoza Baltrán, F. J., Sánchez-Sinencio, F., Zelaya-Angel, O., Mendoza-Alejo Armenta, J.G., Vázquez-López, C., Farias, M.H., Soto, G., Cota-Araiza, L., Peña, J.L., Azamar barrios, J.A. & Baños, L., Jpn. J. Appl. Phys. 30, L1715 (1991).Google Scholar
7. Espinoza-Beltrán, F. J., Zelaya, O., Sánchez-Sinencio, F., Mendoza-Alvarez, J. G., Farias, M.H., Baños, L., J. Vac. Sci. Tech. A 11, 3062 (1993).Google Scholar
8. Triboulet, R., Proc. 3rd Int. Conf. on CdTe, Siffert, P., Cornet, A. (eds.), Strasbourg, p. 171, 1971.Google Scholar
9. Zitter, R. N., Surface Science 28, 335 (1971).Google Scholar
10. Amirtharaj, P. M. and Poliak, F. H., Appl. Phys. Lett. 45(7), 789 (1984).Google Scholar
11. Nishibayashi, Y., Tokumitsu, Y., Imura, T. and Osaka, Y., Jap. J. Appl. Physics part (1), 28(10), 1919 (1989).Google Scholar
12. Vodop'yanov, L. K., vinogradov, E. A., Blinov, A. M., and Rukavishnikov, V. A., Sov. Phys.—Solid State 14, 219 (1972).Google Scholar
13. Rai, Brajesh K., Bist, H. D., Katiyar, R. S., Chen, K. -T., and Burger, A., J. Appl. Phys. 80, 477 (1996).Google Scholar
14. Tanaka, A., Onari, S., and Arai, T., Phys. Rev. B 45, 6587 (1992).Google Scholar