Hostname: page-component-7bb8b95d7b-495rp Total loading time: 0 Render date: 2024-10-06T04:26:21.756Z Has data issue: false hasContentIssue false

Raman Spectroscopy Studies of Reactions Between Sulfur Dioxide and Microparticles of Hydroxides

Published online by Cambridge University Press:  10 February 2011

C. L. Aardahl
Affiliation:
Department of Chemical Engineering, Box 351750, University of Washington, Seattle, WA 98195-1750, davis@cheme.washington.edu
E. J. Davis
Affiliation:
Department of Chemical Engineering, Box 351750, University of Washington, Seattle, WA 98195-1750, davis@cheme.washington.edu
Get access

Abstract

Gas-aerosol chemical reactions between dilute SO2 and alkali-metal hydroxides have been explored using elastic and inelastic (Raman) light scattering. Single charged particles of NaOH, KOH, and Ca(OH)2 were levitated electrodynamically in a reaction chamber and exposed to humid nitrogen. Particles that were not water soluble remained crystalline while water soluble compounds deliquesced into solution microdroplets. The resulting solids or solutions were reacted with dilute SO2 in humid N2. Elastic scattering measurements and Raman spectra were taken during the gas-aerosol reactions, and results indicate that reaction products and sorbent utilization are highly dependent on the water content of the particle.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ingebrethsen, B. J. and Matijevic, E, J. Colloid Interface Sci. 100, p. 1 (1984).Google Scholar
2. Partch, R., Matijevic, E., Hodgson, A. W. and Aiken, B. E., J. Polymer Sci. Polymer Chem. Ed. 21, p. 961 (1983).Google Scholar
3. Ward, T. L., Zhang, S. H., Allen, T. and Davis, E. J., J. Colloid Interface Sci. 118, p. 343 (1987).Google Scholar
4. Mayville, F. C., Partch, R. E. and Matijevic, E., J. Colloid Interface Sci. 120, p. 135 (1987).Google Scholar
5. Li, W., Rassat, S. D., Foss, W. R. and Davis, E. J., J. Colloid Interface Sci. 162, p. 267278 (1994).Google Scholar
6. Rassat, S. D. and Davis, E. J., J. Aerosol Sci. 23, p. 765 (1992).Google Scholar
7. Schweiger, G., J. Aerosol Sci. 21, p. 483 (1990).Google Scholar
8. Fung, K. H. and Tang, I. N., Chem. Phys. Lett. 147, p. 509 (1988).Google Scholar
9. Fung, K. H. and Tang, I. N., J. Colloid Interface Sci. 130, p. 219 (1989).Google Scholar
10. Fung, K. H. and Tang, I. N., J. Aerosol Sci. 20, p. 609 (1989).Google Scholar
11. Fung, K. H., Imre, D. G. and Tang, I. N., J. Aerosol Sci. 25, p. 479 (1994)Google Scholar
12. Ruiz-Alsop, R. and Rochelle, G. T., Report, EPA/600/2-88/037 (1988).Google Scholar
13. Martinez, J. C., Izquierdo, J. F., Cunill, F., Tejero, J. and Querol, J., Ind. Eng. Chem. Res. 30, p. 2143 (1989).Google Scholar
14. Stouffer, M. R., Yoon, H. and Burke, F. P., Ind. Eng. Chem. Res. 28, p. 20 (1989).Google Scholar
15. Karlsson, H. T., Klingspor, J., Linne, M. and Bjerle, I., APCA J. 33, p. 23 (1983).Google Scholar
16. Klingspor, J., Stromberg, A.-M., Karlsson, H. T. and Bjerle, I., Chem. Eng. Process. 18, p. 239 (1984).Google Scholar
17. Petersen, T. and Karlsson, H. T., Chem. Eng. Technol. 11, p. 298 (1988).Google Scholar
18. Sahar, A. and Kehat, E., Ind. Eng. Chem. Res. 30, p. 435 (1991).Google Scholar
19. Aardahl, C. L. and Davis, E. J., Appl. Spectrosc. 50, p. 71 (1996).Google Scholar
20. Vehring, R., Moritz, H., Niekamp, D., Schweiger, G. and Heinrich, P., Appl. Spectrosc. 49, p. 1215 (1995).Google Scholar
21. Onda, K., Kobayashi, T., Fujine, M. and Takahashi, M., Chem. Eng. Sci. 26, p. 2009 (1971).Google Scholar
22. Hikita, H., Asai, S. and Tadahashi, T., AIChE J. 23, p. 538 (1977).Google Scholar
23. Teramoto, T., Nagamochi, M., Hiramine, S., Fujii, N. and Taranishi, H., Int. Chem. Eng. 18, p. 250 (1978).Google Scholar
24. Chang, C.-S. and Rochelle, G. T., Ind. Eng. Chem. Fundam. 24, p. 7 (1985).Google Scholar
25. Davis, E. J., Buehler, M. F. and Ward, T. L., Rev. Sci. Instrum. 61,, p. 1281 (1990).Google Scholar
26. Hartung, W. H. and Avedisian, C. T., Proc. Royal Soc. Lond. A 437, p. 237 (1992).Google Scholar
27. Davis, E. J. and Bridges, M. A., J. Aerosol Sci. 25, p. 1179 (1994).Google Scholar
28. Dawson, P., Hadfield, C. D. and Wilkinson, G. R., J. Phys. Chem. Solids 34, p. 1217 (1973).Google Scholar
29. Davis, A. R. and Chatterjee, R. M., J. Sol. Chem. 4, p. 399 (1975).Google Scholar
30. Mazzacurati, V., Nardone, M. and Signorelli, G., Chem. Phys. 17, p. 227 (1976).Google Scholar
31. Moskovits, M. and Michaelian, K. H., J. Am. Chem. Soc. 102, p. 2209 (1980).Google Scholar
32. Brooker, M. H. and Eysel, H. H., J. Raman Spectrosc. 11, p. 322 (1981).Google Scholar
33. Kanesaka, I., Tsuchida, M. and Kawai, K., J. Raman Spectrosc. 13, p. 253 (1982).Google Scholar
34. Brown, J. D. and Straughan, B. P., J. C. S. Dalton Trans. 1972, p. 1750 (1972).Google Scholar
35. Meyer, B., Peter, L. and Shaskey-Rosenlund, C., Spectrochim. Acta 35A, p. 345 (1979).Google Scholar
36. Meyer, B., Ospina, M. and Peter, L. B., Anal. Chim, Acta 117, p. 301 (1980).Google Scholar
37. Littlejohn, D., Walton, S. A., Chang, S.-G., Appl. Spectrosc. 46, p. 848 (1992).Google Scholar