Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-18T05:46:26.602Z Has data issue: false hasContentIssue false

Raman Study of Strain and Confinement Effects in Si/Ge Strained Layer Superlattices Under Hydrostatic Pressure

Published online by Cambridge University Press:  22 February 2011

Zhifeng Sui
Affiliation:
Department of Applied Physics and the Microelectronics Sciences Laboratories, Columbia University, New York, New York 10027
Irving P. Herman
Affiliation:
Department of Applied Physics and the Microelectronics Sciences Laboratories, Columbia University, New York, New York 10027
Joze Bevk
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
Get access

Abstract

The effects of strain and confinement on optical phonons in a Si12Ge4 strained layer superlattice grown by MBE on c-Si (001) were studied as a function of hydrostatic pressure (T = 295 K) using Raman scattering. The change of phonon frequency with pressure, dω/dP, for the principal quasi-confined LO mode in the Ge layers is found to be significantly smaller than that for bulk crystalline Ge because the magnitude of biaxial strain decreases in the Ge layers with added pressure and because the Grüneisen parameter of the confined mode is smaller than that of the Γ-point optical phonon. More generally, it is noted that the magnitude of biaxial strain in many strained layer superlattices initially decreases with the application of hydrostatic pressure, making the structures more stable.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bevk, J., Ourmazd, A., Feldman, L. C., Pearsall, T. P., Bonar, J. M., Davidson, B. A., and Mannaerts, J. P., Appl. Phys. Lett. 50, 760 (1987).CrossRefGoogle Scholar
2. Kasper, E., Kibbel, H., Jorke, H., Brugger, H., Friess, E., and Abstreiter, G., Phys. Rev. B38, 3599 (1988).Google Scholar
3. Gell, M. A., Phys. Rev. B38, 7535 (1988).Google Scholar
4. Pearsall, T. P., Crit. Rev. Solid State Mater. Sci. 15, 551 (1989) and references cited therein.Google Scholar
5. Menendez, J., Pinczuk, A., Bevk, J., and Mannaerts, J. P., J. Vac. Sci. Technol. B6, 1306 (1988).Google Scholar
6. Dharma-Wardana, M. W. C., Aers, G. C., Lockwood, D. J., and Baribeau, J. -M., Phys. Rev. B41, 5319 (1990).Google Scholar
7. Friess, E., Eberl, K., Menzigar, U., and Abstreiter, G., Solid State Commun. 73, 203 (1990).Google Scholar
8. Sui, Z., Herman, I. P. and Bevk, J., Appl. Phys. Lett. 58, (1991), in press.CrossRefGoogle Scholar
9. Fasolino, A. and Molinari, E., Journal De Physique 48, C5569 (1987).Google Scholar
10. Cerdeira, F., Buchenauer, C. J., Poliak, F. H., and Cardona, M., Phys. Rev. B5, 580 (1972).Google Scholar
11. Dolling, G. and Cowley, R. A., Proc. Phys. Soc. Lond. 88, 463 (1966).Google Scholar
12. Jex, H., Phys. Stat. Sol. (b) 45, 343 (1971)Google Scholar
13. Mitra, S. S. and Massa, N. E., in Handbook on Semiconductors, ed. Moss, T. S. (North Holland, Amsterdam, 1986) Vol. 1, p. 96.Google Scholar
14. Weinstein, B. A. and Piermarini, G. J., Phys. Rev. B12, 1172 (1975).Google Scholar
15. Olego, D. and Cardona, M., Phys. Rev. B25, 1151 (1982).CrossRefGoogle Scholar