Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-21T23:26:17.787Z Has data issue: false hasContentIssue false

Rare-Earth Doped In1−xGaxP Prepared by Metalorganic Vapor Phase Epitaxy

Published online by Cambridge University Press:  26 February 2011

A. J. Neuhalfen
Affiliation:
Department of Materials Science and Engineering and the Materials Research Center, Northwestern University, Evanston, Illinois 60208
B. W. Wessels
Affiliation:
Department of Materials Science and Engineering and the Materials Research Center, Northwestern University, Evanston, Illinois 60208
Get access

Abstract

The dependence of the luminescent properties of rare-earth impurities on the band structure of the host compound semiconductor has been investigated. Photoluminescence spectroscopy was used to characterize the optical properties of rare-earth doped Ini1−xGaxP layers prepared by metalorganic vapor phase epitaxy as a function of alloy composition. Thermal quenching of the Er3+, Yb3+, and Tm3+ related emission was observed over the temperature range of 15K to 360K with activation energies that depended on the alloy composition. From measurements of the thermally activated luminescence quenching, the energy levels of the isovalent erbium, ytterbium, and thulium in the alloys were determined. The variation of the position of the rare-earth related energy levels in the host semiconductor is explained in terms of a vacuum referred binding energy model that should have general applicability to other rare-earth doped semiconductor systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Kasatkin, V. A., Kasamanly, F. P., and Samorukov, B. E., Fiz. Tekh. Poluprovdn. 12, 1644 (1978). [Sov. Phys. Semicond. 12, 974 (1979)].Google Scholar
2 Ennen, H., Schneider, J., Pomrenke, G., and Axmann, A., Appl. Phys. Lett. 43, 943 (1983).CrossRefGoogle Scholar
3 Ennen, H. and Schneider, J., in Proceedings of the 13th International Conference on Defects in Semiconductors, edited by Kimeriing, L. C. and Parsey, J. M. Jr, (American Institute of Metallurgical Engineering, New York, 1985) p. 115.Google Scholar
4 Pomrenke, G. S., Ennen, H., and Haydl, W., J. Appl. Phys. 59, 601 (1986).CrossRefGoogle Scholar
5 Klein, P. B., Solid State Comm. 65, 517 (1988).Google Scholar
6 Takahei, K., Taguchi, A., Nakagome, H., Uwai, K., and Whitney, P. S., J. Appl. Phys. 66, 4941 (1989).Google Scholar
7 Takahei, K. and Taguchi, A., in Proceedings of the 16th International Conference on Defects in Semiconductors, edited by Stavola, M. and DeLeo, G. G. (Trans Tech Publications, Aedermannsdorf, Switzerland, 1991) (in press).Google Scholar
8 Klein, P. B., Moore, F. G., and Dietrich, H. B., in Proceedings of the 16th International Conference on Defects in Semiconductors, edited by Stavola, M. and DeLeo, G. G. (Trans Tech Publications, Aedermannsdorf, Switzerland, 1991) (in press).Google Scholar
9 Hemstreet, L. A., in Materials Science Forum, edited by H. J. von Bardeleben (Trans Tech Publications, Aedermannsdorf, Switzerland, 1986) vol. 10–12, p. 85.Google Scholar
10 Schmitt-Rink, S., Varma, C. M., and Levi, A. F. J., Phys. Rev. Lett. 66, 2782 (1991).CrossRefGoogle Scholar
11 Delerue, C. and Lannoo, M., Phys. Rev. Lett. 67, 3006 (1991).CrossRefGoogle Scholar
12 Korber, W., Weber, J., Hangleiter, A., Benz, K. W., Ennen, H., and Muller, H. D., J. Cryst. Growth 79, 870 (1985).Google Scholar
13 Whitney, P. S., Uwai, K., Nakagome, H., and Takahei, K., Appl. Phys. Lett. 53, 2074 (1988).CrossRefGoogle Scholar
14 Neuhalfen, A. J., Williams, D. M., and Wessels, B. W., in Proceedings of the 16th International Conference on Defects in Semiconductors, edited by Stavola, M. and DeLeo, G. G. (Trans Tech Publications, Aedermannsdorf, Switzerland, 1991) (in press).Google Scholar
15 Neuhalfen, A. J. and Wessels, B. W., Appl. Phys. Lett. 59, 2317 (1991).Google Scholar
16 Huang, K. and Wessels, B. W., J. Appl. Phys. 60, 4342 (1986).Google Scholar
17 Williams, D. M. and Wessels, B. W., Appl. Phys. Lett. 56, 566 (1990).CrossRefGoogle Scholar
18 Weber, M. J., in Handbook on the Physics and Chemistry of Rare Earths, edited by Gschneidner, K. A. Jr, and Eyring, L. (North-Holland Publishing Co., Amsterdam, 1979) vol. 4, p. 293.Google Scholar
19 Ledebo, L. and Ridley, B. K., J. Phys. C 15, L961 (1982).Google Scholar
20 Caldas, M. J., Fazzio, A., and Zunger, A., Appl. Phys. Lett. 45, 671 (1984).CrossRefGoogle Scholar
21 Harrison, W. A., Electronic Structure and the Properties of Solids (W. H. Freeman and Co., San Francisco, 1980) p. 254.Google Scholar
22 Onton, A. and Chicotka, R. J., Phys. Rev. B 4, 1847 (1971).CrossRefGoogle Scholar
23 Taguchi, A., Nakagome, H., and Takahei, K., J. Appl. Phys. 68, 3390 (1990).Google Scholar