Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-17T10:38:14.745Z Has data issue: false hasContentIssue false

Reaction of Amorphous Minb Films with Crystalline Metal Overlayers

Published online by Cambridge University Press:  26 February 2011

E. A. Dobisz
Affiliation:
University of Wisconsin-Madison, 1500 Johnson Drive, Madison, WI 53706
B. L. Doyle
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
J. H. Perepezko
Affiliation:
University of Wisconsin-Madison, 1500 Johnson Drive, Madison, WI 53706
J. D. Wiley
Affiliation:
University of Wisconsin-Madison, 1500 Johnson Drive, Madison, WI 53706
P. S. Peercy
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
Get access

Abstract

In many cases the stability of amorphous films is influenced by interaction with metallic crystalline overlayers. Such interactions between Au, Ni, Nb and Ta overlayers and a-(Ni-Nb) films are reported. During interdiffusion Au overlayers reacted with a-(Ni-Nb) to form two different adjacent crystalline layers. In order to study the influence of relaxation of the amorphous film on overlayer reaction several a-(Ni-Nb) samples were pre-annealed prior to Au deposition. High depth resolution Rutherford Backscattering Spectrometry (RBS) demonstrates that preannealing lowers the diffusion poefficient of Au in a-(Ni-Nb) at 4500C from 7.5×10−22 m2/s to 8.7×10−23 m22/s. During interdiffusion Ta was discovered to be substantially more inert than Au. For example, negligible interdiffusion between Ta and a-(Ni-Nb) at 505°C after 25 hours implies a diffusivity of less than 5×10−24 m2/s. These observations allow assessment of some of the requirements for increasing the stability of crystalline-amorphous metal film layered structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wiley, J. D., Perepezko, J. H., Nordman, J. E., Thomas, R. E. and Madison, D. E., Bull. Am. Phys. Soc. 26, 454 (1981).Google Scholar
2. Doyle, B. L., Peercy, P. S., Wiley, J. D., Perepezko, J. H. and Nordman, J. E., J. Appl. Phys. 53, 6186 (1982).Google Scholar
3. Doyle, B. L., Peercy, P. S., Thomas, R. E., Perepezko, J. H. and Wiley, J. D., Thin Solid Films 104, 69 (1983).Google Scholar
4. Finetti, M., Pan, E. T-S, Suni, T. and Nicolet, M-A, Appl. Phys. Lett. 42, 987 (1983).10.1063/1.93824Google Scholar
5. Kung, K. T-Y, Suni, I. and Nicolet, M-A, J. Appl. Phys. 55, 3882 (1984).Google Scholar
6. Todd, A. G., Harris, P. G., Scobey, I. H. and Kelly, M. J., Solid-State Electron, 27, 507 (1984).Google Scholar
7. Wicka-nden, D. K., Sisson, M. J., Todd, A. G. and Kelly, M. J., Solid-State Electron. 27, 515 (1984).10.1016/0038-1101(84)90180-1Google Scholar
8. Dobisz, E. A., Aaron, D.B., Guo, K. J., Perepezko, J. H., Thomas, R. E. and Wiley, J. D., J. Non-Crystalline Solids 62, 901 (1984).Google Scholar
9. Williams, J. S. and Möller, W., Nucl. Instrum. Methods 157, 213 (1978).Google Scholar
10. Perepezko, J. H. and Boettinger, W. J., Mat. Res. Soc. Symp. Proc.,19 223 (1983).Google Scholar
11. Tu, K. N. and Mayer, J. W., in “Thin Films-Interdiffusion and Reactions” ed. Poate, J. M., Tu, K. N. and Mayer, J. W. (Wiley-Interscience, NY 1968).Chap. 10.Google Scholar
12. Köster, U., Ho, P. S. and Lewis, J. E., J. Appl. Phys. 53 7436 (1982).Google Scholar
13. Ottaviani, G., Tu, K. N., Thompson, R. D., Mayer, J. W. and Lau, S. S., J. Appl. Phys. 54 4614 (1983).Google Scholar
14. Dobisz, E. A., Perepezko, J. H., Doyle, B. L., Peercy, P. S. and Wiley, J. D., to be published.Google Scholar