Hostname: page-component-84b7d79bbc-dwq4g Total loading time: 0 Render date: 2024-07-30T18:21:44.437Z Has data issue: false hasContentIssue false

Reactions of Defined Oxidized Carbon Fiber Surfaces with Model Compounds and Polyurethane Elastomers

Published online by Cambridge University Press:  15 February 2011

Charles U. Pittman Jr.
Affiliation:
Departments of Chemistry and Chemical Engineering, Mississippi State University, Mississippi State, MS 39762
Steven D. Gardner
Affiliation:
Departments of Chemistry and Chemical Engineering, Mississippi State University, Mississippi State, MS 39762
Guoren He
Affiliation:
Departments of Chemistry and Chemical Engineering, Mississippi State University, Mississippi State, MS 39762
Lichang Wang
Affiliation:
Departments of Chemistry and Chemical Engineering, Mississippi State University, Mississippi State, MS 39762
Zhihong Wu
Affiliation:
Departments of Chemistry and Chemical Engineering, Mississippi State University, Mississippi State, MS 39762
C. Singamsetty
Affiliation:
Departments of Chemistry and Chemical Engineering, Mississippi State University, Mississippi State, MS 39762
Biahua Wu
Affiliation:
Departments of Chemistry and Chemical Engineering, Mississippi State University, Mississippi State, MS 39762
Glyn Booth
Affiliation:
Departments of Chemistry and Chemical Engineering, Mississippi State University, Mississippi State, MS 39762
Get access

Abstract

Ex-PAN carbon fiber surfaces, oxidized to varying degrees by HNO3, have been characterized by NaOH, dye and HCl uptake, ion scattering spectroscopy (ISS), and angleresolved X-ray photoelectron spectroscopy (ARXPS). Subsequent treatments with tetraethylenepentamine to introduce amino groups or epichlorohydrin to introduce epoxy groups have been thoroughly characterized. The efficiency of using these surface functions to bond polymers onto fiber surfaces has been investigated using model anhydrides and isocyanates (for amines) and diols and diamines (for epoxides). The fraction of surface-bound groups which react drops with an increase in molecular size of the species being grafted. Crosslinked elastomeric polyurethane layers with designed modulus values and thicknesses have been bonded to these fibers. Composites have been prepared (epoxy matrices). The impact strengths and interlaminar shear strengths (ILSS) were studied as a function of the interphase modulus and thickness. Impact strengths increased (even at 500–1500 Å thicknesses). ILSS values depend on interphase modulus.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Drzal, L. T., Rich, M. J., Koenig, M. F. and Lloyd, P. F., J. Adhesion, 16, 133 (1983).Google Scholar
2. Agarwal, B. D. and Broutman, L. J., Analysis and Performance of Fiber Composites (John Wiley & Sons, New York, 1980), p. 33.Google Scholar
3. Subramanian, R. V. and Crasto, A. S., Polym. Composites, 7, 201 (1986).Google Scholar
4. Gerard, J. F., Polym. Eng. Sci., 28 (9), 568 (1988).Google Scholar
5. Syltan, J. N. and McGarry, F. J., Polym. Eng. Sci., 13, 29 (1979).Google Scholar
6. Matonis, V. A. and Small, M. C., Polym. Eng. Sci., 9 (2), 90 (1969).Google Scholar
7. Broutman, L. J. and Agarwal, B. D., Polym. Eng. Sci., 14, 581 (1974).Google Scholar
8. Gardner, S. D., Pittman, C. U. Jr. and Hackett, R. M., J. Comp. Mat., 27 (8), 830 (1993).Google Scholar
9. Gardner, S. D., Pittman, C. U. Jr. and Hackett, R. M., Comp. Sci. Technol., 46, 307 (1993).Google Scholar
10. Low, B. Y., Gardner, S. D., Pittman, C. U. Jr. and Hackett, R. M., Comp. Sci. Technol., 52, 589 (1994).Google Scholar
11. Dauksys, J. R., J. Adhesion, 5, 211 (1973).Google Scholar
12. Tryson, L. D. and Kardos, J. L., 36th Ann. Conf. on Reinforced Plastic Comp. Inst. SPI, 2-E (1981), p. 1.Google Scholar
13. Crammer, J. H., Tesoro, G. C. and Uhlmann, D. R., Ind. Eng. Chem. Proc. Res. Dev., 21, 185 (1982).Google Scholar
14. Subramanian, R. V. and Crasto, A. S., Polym. Composites, 7, 201 (1986); S. Dajardin, et al., J. Mater. Sci., 21, 4342 (1986).Google Scholar
15. Bell, J. P., Chang, J., Rhee, H. W. and Joseph, R., Polym. Composites, 8, 46 (1987); H. W. Rhee and J. P. Bell, Polym. Composites, 12, 213 (1991).Google Scholar
16. Chang, J., Bell, J. P. and Joseph, R., SAMPE Quarterly, 18 (3), (1987).Google Scholar
17. Wimolkiatisak, A. S. and Bell, J. P., J. Appl. Polym. Sci., 46, 1899 (1992) and Polym. Composites, 10, 162 (1989); J. Chang, J. P. Bell and S. Shkolnik, J. Appl. Polym. Sci., 34, 2015 (1987).Google Scholar
18. Gerard, J. F., Polym. Eng. Sci., 28 (9), 568 (1988).Google Scholar
19. Kodama, M., Karino, I. and Kobayashi, J., J. Appl. Polym. Sci., 33, 361 (1987).Google Scholar
20. Skourlis, T., Duvis, T. and Papaspyrides, C. D., Composites Sci. Technol., 48, 119 (1993).Google Scholar
21. Pittman, C. U. Jr., He, G. R., Wu, B., Wang, L., Gardner, S. D., Proceedings of the First International Conference on Composite Envineering (ICCE/1) D. Hui, Editor, Aug. 28-31 (1994), New Orleans, LA, pp. 403–404 and The Fifth International Conference on Composite Interfaces (ICCI-V). Molecular Interactions and Structure Ishida, Ed., June 20-23 (1994), Chalmers University of Technology, Göteborg, SwedenGoogle Scholar
22. He, G. R., PhD Thesis, Mississippi State University, 1994.Google Scholar
23. Wei, Li, MS Thesis, Mississippi State University, 1995.Google Scholar
24. Wu, Z., MS Thesis, Mississippi State University, 1994.Google Scholar
25. Wu, Z., Pittman, C. U. Jr. and Gardner, S. D., Carbon, in press (1995); Carbon, in press, submitted (1995).Google Scholar