Hostname: page-component-5c6d5d7d68-tdptf Total loading time: 0 Render date: 2024-08-18T14:26:56.065Z Has data issue: false hasContentIssue false

Real-Time Diagnosis of Etching and Deposition Processes by Spectroscopic Ellipsometry

Published online by Cambridge University Press:  21 February 2011

D. E. Aspnes
Affiliation:
Bell Communications Research, 600 Mountain Avenue, Murray Hill, NJ 07974
R. P. H. Chang
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
Get access

Abstract

Recent advances in instrumentation and data analysis have made spectroscopic ellipsometry a routine analytic tool with submonolayer sensitivity for monitoring and controlling cleaning, etching, deposition, or other processes that take place in relatively high-pressure or reactive environments. We discuss representative applications in chemical etching, plasma processing, and MOCVD to illustrate analytical procedures and to indicate other potential uses of the technique. The possibility of extracting surface information already carried in the polarization state of the processing laser beam is also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. A summary of recent applications of optical methods to the real-time characterization problem can be found in Acta Electronica 24, Nos. 2 and 3 (1981/1982).Google Scholar
2. Muller, R. H., Surf. Sci. 56, 19 (1976).Google Scholar
3. Drevillon, B., Perrin, J., Marbot, R., Violet, A., and Dalby, J. L., Rev. Sci. Instrum. 53, 969 (1982).Google Scholar
4. Moritani, A., Okuda, Y., Kubo, H., and Nakai, J., Appl. Opt. 22, 2429 (1983).Google Scholar
5. Azzam, R. M. A. and Bashara, N. M., Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).Google Scholar
6. Aspnes, D. E., J. Vac. Sci. Technol. 17, 1057 (1980).Google Scholar
7. Aspnes, D. E., Thin Solid Films 89, 249 (1982).Google Scholar
8. Aspnes, D. E., Surf. Sci. 135, in press (1983).Google Scholar
9. Hottier, F. and Theeten, J. B., J. Cryst. Growth 48, 644 (1980).Google Scholar
10. Laurence, G., Hottier, F., and Hallais, J., Revue. Phys. Appl. 16, 579 (1981).Google Scholar
11. Aspnes, D. E. and Studna, A. A., SPIE Proc. 276, 227 (1981).Google Scholar
12. Chang, R. P. H. and Darack, S., Appl. Phys. Lett. 42, 272 (1983).Google Scholar
13. Chang, R. P. H., Darack, S., Lane, E., Chang, C. C., Allara, D., and Ong, E., J. Vac. Sci. Technol. Bl, in press (1983).Google Scholar
14. Auston, D. H., Golovchenko, J. A., Simons, A. L., Surko, C. M., and Venkatesan, T. N. C., Appl. Phys. Lett. 34, 777 (1979).Google Scholar
15. Lo, H. and Compaan, A., Appl. Phys. Lett. 38, 179 (1981).Google Scholar
16. Daneu, V., Osgood, R. M. Jr., and Ehrlich, D. J., Optics Letters 6, 563 (1981).Google Scholar
17. Stiblert, L. and Sandstrom, T., Journal de Physique-Colloque, in press (1983).Google Scholar