Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-07-06T17:20:28.888Z Has data issue: false hasContentIssue false

Redox Effects in Self-Sustainiing Combustion Synthesis of Oxide Ceramic Powders

Published online by Cambridge University Press:  25 February 2011

L.A. Chick
Affiliation:
Pacific Northwest Laboratory, Richland, Washington 99352
G.D. Maupin
Affiliation:
Pacific Northwest Laboratory, Richland, Washington 99352
G.L. Graff
Affiliation:
Pacific Northwest Laboratory, Richland, Washington 99352
L.R. Pederson
Affiliation:
Pacific Northwest Laboratory, Richland, Washington 99352
D.E. Mccready
Affiliation:
Pacific Northwest Laboratory, Richland, Washington 99352
J.L. Bates
Affiliation:
Pacific Northwest Laboratory, Richland, Washington 99352
Get access

Abstract

The glycine/nitrate process (GNP) is a combustion synthesis method that is particularly useful for synthesizing ultra-fine, multi-component oxide powders. During the self-sustaining combustion, the precursor solution is rapidly converted into an oxide product with glycine serving as the fuel and nitrates providing the oxidant. This paper examines the effects of altering the fuel/oxidant ratio on the characteristics of the product. Examples discussed include La(Sr)CrO3 and La(Sr)FeO3 perovskites and NiO.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tejuca, L.G. and Fierro, J. G., Advances in Catalysis, 36 (1989) 237.Google Scholar
2. Pechini, M. P., US Patent 3,330,697 (1967).Google Scholar
3. Eror, N. G. and Anderson, H. U., in: Better Ceramics Through Chemistry. II. Mat. Res. Soc. Symp. Proc., Vol 73. Edited by Brinker, C. J., Clark, D. E., and Ulrich, D. R.. Mat. Res. Soc., Pittsburgh, PA (1986) pp. 571–77.Google Scholar
4. Anderton, D. J. and Sale, F. R., Powder Metallurgy, 22 (1979) 8.Google Scholar
5. Baythoun, M. S. and Sale, F. R., J. Mater. Sci. 17 (1982) 2757.Google Scholar
6. Lessing, P. A., Ceramic Bulletin 68 (1989) 1002.Google Scholar
7. Chick, L. A., Pederson, L. R., Maupin, G. D., Bates, J. L., Thomas, L. E. and Exarhos, G. J., Mater. Lett. 10 (1990) 6.Google Scholar
8. Ravindranathan, P. and Patil, K. C., J. Mater. Sci. Lett. 5 (1986) 221.Google Scholar
9. Ravindranathan, P. and Patil, K. C., Am. Ceram. Soc. Bull. 66 (1987) 668.Google Scholar
10. Ravindranathan, P. Mahesh, G. V. and Patil, K. C., J. Solid State Chem. 66 (1987) 20.CrossRefGoogle Scholar
11. Kingsley, J. J. and Patil, K. C., Mater. Lett. 6 (1988) 427.Google Scholar
12. Kingsley, J. J., Manoharan, S. Sudar, Suresh, K. and Patil, K. C., in: Proceedings of the 2nd International Conference on Ceramic Powder Processing Science, eds. Harsner, H., Messing, G. L. and Hirano, S. (Deutsche Keramische Gesellschaft, 1988) p. 343.Google Scholar
13. Zhang, H. M., Shimizu, Y., Teraoka, Y., Miura, N. and Yamazoe, N.. J. Catalysis, 121, pp. 432–40 (1990).Google Scholar