Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-24T01:40:36.106Z Has data issue: false hasContentIssue false

Reduced Thermal Budget Borophosphosilicate Glass (BPSG) Fusion and Implant Activation Using Rapid Thermal Annealing and Steam Reflow

Published online by Cambridge University Press:  21 February 2011

R.P.S. Thar
Affiliation:
Micron Semiconductor Inc., 2805 East Columbia Road, Boise, ID 83706
F. Gonzalez
Affiliation:
Micron Semiconductor Inc., 2805 East Columbia Road, Boise, ID 83706
R. Hawthorne
Affiliation:
Micron Semiconductor Inc., 2805 East Columbia Road, Boise, ID 83706
V. Ward
Affiliation:
Micron Semiconductor Inc., 2805 East Columbia Road, Boise, ID 83706
N. Jeng
Affiliation:
Micron Semiconductor Inc., 2805 East Columbia Road, Boise, ID 83706
Get access

Abstract

Highly dense next generation dynamic random access memory (DRAM) devices impose severe restrictions on the times, temperatures and atmospheres of all thermal process steps following the sourcedrain implantation. BPSG reflow and source-drain implant activation are two of the process steps that contribute significantly towards enhanced overall thermal budget during the fabrication of DRAM devices.

In this paper, we present the results of an optimized thermal budget process using a combination of steam reflow and rapid thermal annealing (RTA). We demonstrate that this approach produces better reflow characteristics than the best RTA or reflow cycle alone. The processes will be compared on pchannel CMOS devices and the differences in various electrical characteristics will be highlighted. The results of BPSG reflow and dopant outdiffusion will be presented. Experimentally obtained data on junction depth from SIMS analysis will be correlated with corresponding RTA simulation results.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kern, W. and Schnable, G.L., RCA Rev., 43,423 (1982).Google Scholar
2. Hurley, K.H., Solid State Technol., 104 (1987)Google Scholar
3. Kern, W. and Hartman, J., Thin Solid Films, 206, 64 (1991).Google Scholar
4. Levy, R.A. and Nassau, K., Solid State Technol., 133, 123 (1986)Google Scholar
5. O'Meara, D.L. and Hochberg, A.K., Mat. Res. Soc. Symp. Proc., 204, 533 (1991)CrossRefGoogle Scholar
6. Thakur, R.P.S., Ward, V., and Martin, A., MRS Fall Meeting, Boston, MA (1992).Google Scholar
7. Imai, S., Yabuuchi, Y., Terai, Y., Yasui, T., Kudo, C., Nakao, I., and Fukumoto, M., Appl. Phys. Lett. 60 (22), 2761 (1992).Google Scholar
8. Tong, J. E., Schertenleib, K., and Carpio, R. A., Solid State Technol., 27 (1), 161 (1984).Google Scholar
9. Avigal, I., Solid State Technol., 26 (10), 217 (1983).Google Scholar
10. Singh, R., J. Appl. Phys., 63, R59 (1988).Google Scholar
11. Jensen, K. and Kem, W., in Thin Film Processes II, edited by Vossen, J. L. and Kern, W., (Academic Press, New York, 1991), Chapter III, p. 525.Google Scholar
12. Thakur, R.P.S., Singh, R., Nelson, A.J., Ullal, H.S., Chaudhuri, J., and Gondhalekar, V., J. Appl. Phys., 69 (1), 367 (1991).Google Scholar
13. Fang, Y.K. et al. , Appl. Phys. Lett., 61 (4), 447 (1992).Google Scholar
14. Kern, W., Kurylo, W.A., and Tino, C.J., RCA Rev., 46, 117 (1985).Google Scholar
15. Fair, R.B., Impurity Doping Processes in Silicon, edited by Wang, F.F.Y., (Elsevier, North Holland, New York, 1981), Chapter 7.Google Scholar
16. Williams, D.S., J. Electrochem. Soc. 134, 657 (1987).Google Scholar