Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-16T22:56:36.791Z Has data issue: false hasContentIssue false

Reduction of Moisture Sensitivity in Natural Fibres

Published online by Cambridge University Press:  14 March 2011

Gerard T. Pott*
Affiliation:
Ceres B.V., Wildekamp 1B, 6704 AT Wageningen, The Netherlands, ceres@bart.nl
Get access

Abstract

When natural fibres are applied as reinforcement in polymer composites the moisture sensitivity, causing fibre swell and ultimately rotting through fungi attack, can be a very serious problem. A number of methods have been developed dealing with this problem that change the chemical and / or physical composition of the fibre, resulting in reduced moisture sensitivity. To this category belong acetylation and hydrothermal treatment. For acetylation, acetic anhydride is used as a chemical that reacts with reactive OH-groups of the lignocellulose material, increasing hydrophobicity. In hydrothermal treatment no chemicals are used, only water and energy.

The main focus of this paper is on hydrothermal treatment, the Duralin® process in particular, of bast fibres such as flax, jute and hemp. Acetylation is reviewed briefly. A survey is given of the structure and composition of bast fibres and the moisture adsorption and desorption mechanisms in these fibres.

The Duralin® process involves three steps, hydrothermolysis, drying and curing. The raw material for the Duralin® process applied to flax is green rippled flax straw. This eliminates the need for the traditional dew-retting, a risky process where the freshly harvested flax stems lay on the field for about four weeks. The Duralin® process reduces moisture absorption and biological degradation, the fibre yield is higher than after dew-retting and the shives can be used as a filler material in polymers and for making a water proof particle board. The main causes for reduced water uptake after Duralin treatment will be reviewed.

Duralin® fibres have equal or higher tensile strength and higher flexural modulus than fibres extracted from dew-retted flax. Compounds reinforced with these fibres have apart from decreased moisture sensitivity a better mechanical performance. Both the amount and the release rate of decomposition products resulting from compounding with polypropylene are significantly less for Duralin® fibres than for dew-retted or green fibres. Duralin® fibres are on a weight basis competitive with glass fibres.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mieck, K.P., Nechwatal, A. and Knobelsdorf, C. Angew. Makromole.Chem. 224, 73 (1995.Google Scholar
2. Mieck, K.P., Nechwatal, A. and Knobelsdorf, C. Angew. Makromole.Chem, 225, 37(1995).Google Scholar
3. Gassan, J. and Bledzki, A.K., Angew. Mokromole. Chem. 236, 129 (1996).Google Scholar
4. Gassan, J. and Bledzki, A.K., Composites: Part A 28A, 1001(1997)Google Scholar
5. Lee, S.M. and Rowell, R.M. International Encyclopaedia of Composites Vol 4, VHC New York (1991).Google Scholar
6. Sanadi, A.R., Prasad, S.V., and Rohatgi, P.K., J.Mater.Sci. 21 (1986).Google Scholar
7. Rowell, R.M. For. Prod. Abstr. 6, 363 (1983).Google Scholar
8. Hill, C.A.S., Abdul Khalil, H.P.S., and Hale, M.D., Ind. Crops and Prod. 8, 53 (1998).Google Scholar
9. Murray, J.E., 21st International BPF Composites Congress, 1998, British Plastics Federation, London Publication Number 293/12.Google Scholar
10. Ebrahimzadeh, P.R. Paper 5 in Thesis, Chalmers University of Technology Göteborg (1997).Google Scholar
11. Pott, G.T., Hueting, D.J., Maassen, W.A.H., van Deursen, J.H., Proc.of Internationales Symposium ” Werkstoffe aus nachwachsenden Rohstoffen”, Rudolstadt, Sept.1997.Google Scholar
12. Pott, G.T., Pilot, R.J., and van Hazendonk, J.M., Proc.of the 5 th European Conference on Advanced Materials and Processes and Applications (Euromat 97), Vol 2, Polymers and Ceramics, Maastricht, 2123 April 1997, p.107.Google Scholar
13. Peijs, T., van Melick, H.G.H., Garkhail, S.K., Pott, G.T., Stamboulis, A., and Baillie, C.A., Proc.of European Conference on Composite Materials, Naples 3-6 June 1998, Vol. 2, p.119.Google Scholar
14. Pott, G.T., van Deursen, J.H., Hueting, D.J. and van der Wooning, A., Proc.of Internationales Symposium “ Werkstoffe aus nachwachsenden Rohstoffen”, Erfurt, Sept.1999.Google Scholar
15. Pott, G.T., Hueting, D.J. and van Deursen, J.H., 3rd International Wood and Natural Fibre Composites Symposium, Sept. 2000, Kassel.Google Scholar
16. Pizzi, A. and , Eaton, J. Macromol. Sci.-Chem. A22(2), 105 (1985).Google Scholar
17. De Jong, E., van Roekel, G.J., Snijder, M.H.B. and Zhang, Y. Pulp&Paper Canada 100:9,19 (1999).Google Scholar
18. , Fengel and , Wegener, ”Wood, Chemistry, Ultrastructure, ReactionsWalterdeGruyter, Berlin 1989, Chapter 5.Google Scholar
19. Kato, K., Encycl. Plant Physiol., 1981, 13 B, p. 2946 Google Scholar
20. Morrison, W.H., Archibald, D.D., Sharma, H.S.S. and Akin, D.E., Ind. Crops Prod. 12, 39 (2000).Google Scholar
21. Akin, D.E., Gamble, G.R., Morrison, W.H. and Rigsby, L.L., J.Sci.Food Agrir. 72, 155 (1996).Google Scholar
22. Pizzi, A. and , Eaton, J. Macromol. Sci.-Chem. A24(9), 1065 (1987).Google Scholar
23. Ebrahimzadeh, P.R. A.4, 24, Thesis, Chalmers University of Technology Göteborg, 1997.Google Scholar
24. Carrington, H., Phil.Mag. 41(1921)Google Scholar
25. Kroon-Batenburg, L.M.J. and , Kroon, J., Carbohydrates in Europe 12, 15 (1995).Google Scholar
26. Fiebig, D. and Soltau, D., Textielveredlung 32, 116 (1997).Google Scholar
27. Fiebig, D., Herlinger, H. and Kastl, B., Textil Praxis 48, 789 (1993).Google Scholar
28. Fengel, D., Holz Roh-Werkst 25, 102 (1967).Google Scholar
29. Roffael, E. and Schaller, K., Holz Roh-Werkst 29, 275(1971).Google Scholar
30. Basch, A. and Lewin, M., J. Polym. Sci. Polym.Lett.Ed. 13, 493 (1975).Google Scholar
31. Tjeerdsma, B.F., Boonstra, M., Pizzi, A., Tekely, P. and Militz, H., Holz als Roh-und Werkstoff 56, 149 (1998).Google Scholar
32. Boonstra, M.J., Tjeerdsma, B.F., Groeneveld, H.A.C. International Research Group on Wood Preservation, 1998, Document.No. IRG/WP.98-40123.Google Scholar
33. Tjeerdsma, B.F., Boonstra, M.J., Militz, H., International Research Group on Wood Preservation, 1998, Document No.IRG/WP 98-40124.Google Scholar
34. Ivanov, A.N. et al., Izwestia Vistsjich Utsjebnich Zavednich 3, (147), 19 (1982).Google Scholar
35. Kroon-Batenburg, L.M.J., Utrecht University, unpublished result, 1999 Google Scholar
36. Dijon, G.G., Baillie, C. and Murphy, R., 6th International Conference on Woodfibre-Plastic Composites, Madison USA, 2001, May 15-16.Google Scholar
37. Zafeiropoulos, N.E., Baillie, C.A. and Matthews, F.L., Adv. Comp. Lett., 2001,Google Scholar
38. Glasser, W.G., Taib, R., Jain, R.K., and Kander, R., J.Appl.Polymer Sci. 73, 1329 (1999).Google Scholar
39. Stamboulis, A., Baillie, C.A. and Peijs, T., Composites: Part A 32, 1105 (2000)Google Scholar