Hostname: page-component-7bb8b95d7b-wpx69 Total loading time: 0 Render date: 2024-10-07T06:20:24.819Z Has data issue: false hasContentIssue false

Residual Stress and Microstructure of CU/W Multilayers

Published online by Cambridge University Press:  15 February 2011

Ph. Goudeau
Affiliation:
Laboratoire de Métallurgie Physique (URA 131 CNRS), Université de Poitiers, 40 avenue du Recteur Pineau, 86022 Poitiers cedex, France.
K.F. Badawi
Affiliation:
Laboratoire de Métallurgie Physique (URA 131 CNRS), Université de Poitiers, 40 avenue du Recteur Pineau, 86022 Poitiers cedex, France.
A. Naudon
Affiliation:
Laboratoire de Métallurgie Physique (URA 131 CNRS), Université de Poitiers, 40 avenue du Recteur Pineau, 86022 Poitiers cedex, France.
N. Durand
Affiliation:
Laboratoire de Métallurgie Physique (URA 131 CNRS), Université de Poitiers, 40 avenue du Recteur Pineau, 86022 Poitiers cedex, France.
Get access

Abstract

We have determined residual stresses and the layer microstructure in as-prepared Cu/W multilayers of different periods ranging from 5.2 to 20 nm by both X-ray diffraction and the curvature radius method. The magnitude of the principal in-plane stress is large in the W layers (around - 6 GPa) and small in the Cu layers (-0.5 - + 0.5 GPa). The stress state is independent of the multilayer period. Under the compressive stress, the W cubic unit cell becomes monoclinic-like. The stress-free lattice parameter is found higher than the bulk one.

We also studied the stress relaxation and the layer microstructure modification in W layers induced by Kr ion irradiation., the relaxation is almost achieved after only low fluence irradiations and the decrease of the stress-free lattice parameter in W layers observed for higher fluences is attributed to the formation of a sursaturated solid solution W(Cu).

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Thurner, G. and Abermann, R., Thin Solid Films 192, 277 (1990).CrossRefGoogle Scholar
2 Thorton, J.A. and Hoffman, D.W., J. Vac. Sci. Technol. A 3, 576 (1985).CrossRefGoogle Scholar
3 Dirks, A.G. and Van Denbroek, J.J., Thin Solid Films 96, 257 (1982).CrossRefGoogle Scholar
4 Goudeau, Ph., Badawi, K.F., Naudon, A. and Gladyszewski, G., Appl. Phys. Lett. 62, 1 (1993).CrossRefGoogle Scholar
5 A. Chamberod and J. Hillairet (eds), Multicouches métalliques, Mater. Sci. Forum 59 & 60 (1990).Google Scholar
6 Badawi, K.F., Goudeau, Ph., Pacaud, J., Jaouen, C., Delafond, J., Naudon, A. and Gladyszewski, G., Nuclear Instrum. Methods. B (in press).Google Scholar
7 Gladyszewski, G., Goudeau, P., Naudon, A., Jaouen, Ch. and Pacaud, J., Mater. Lett. 12, 419 (1992).CrossRefGoogle Scholar
8 Badawi, K.F., Declemy, A., Naudon, A. and Goudeau, Ph., J. Phys.III 2,1741 (1992).Google Scholar
9 Badawi, K.F., Naudon, A. and Goudeau, Ph., Appl. Surf. Sci. (in press).Google Scholar
10 Badawi, K.F., Castex, L. and Sprauel, J.M., in Matériaux et Structures, Eds Hermes, Paris, 1987, p.295.Google Scholar
11 Badawi, K.F., Kahloun, C. and Grilhe, J., J. Phys. III (in press).Google Scholar
12 Guinier, A., Théorie et Technique de la Radiocristallographie (Dunod, Paris, 1964), p.462.Google Scholar
13 Maeder, G., Chemica Scripta, 26A 23 (1986).Google Scholar
14 Hoffman, R.U., in: Hass, G. and Thun, R. eds, Physics of Thin Films, 3, Academic press (1966).Google Scholar
15 Quere, Y., Défauts Ponctuels dans les Solides (Masson, Paris, 1967).Google Scholar
16 Windischmann, H., in CRC Critical Reviews in Solid State and Materials Sciences, 17, CRC Press, Inc., 1992, p.547.Google Scholar
17 Gladyszewski, G., Pacaud, J., Goudeau, Ph., Jaouen, C., Naudon, A. and Grilhe, J., Vacuum (in press).Google Scholar
18 Pacaud, J., Gladyszewski, G., Jaouen, C., Naudon, A., Goudeau, Ph. and Grilhe, J., J. Appl. Phys. (in press).Google Scholar