Hostname: page-component-84b7d79bbc-l82ql Total loading time: 0 Render date: 2024-07-26T13:24:59.141Z Has data issue: false hasContentIssue false

The Role of Oxygen in the Hot Isostatic Pressing of High Tc Superconductors

Published online by Cambridge University Press:  15 February 2011

John V. Niska
Affiliation:
Luleå University of Technology, Dept. of Engineering Materials, S-95187 Luleå, Sweden
Bengt Loberg
Affiliation:
Luleå University of Technology, Dept. of Engineering Materials, S-95187 Luleå, Sweden
Get access

Abstract

The bismuth-based 2212 and 2223 superconductors and the yttrium-based 123 and 124 high Tc superconductors are oxide ceramics, so that oxidizing conditions must be maintained in the HIP to avoid oxygen loss and decomposition. This has been done in an argon gas HIP by using glass encapsulation, but internal gas pressure retards densification. The thermodynamics of the release of oxygen by the superconductive ceramics and the stability of the metal to oxygen can be shown on a free energy diagram (Ellingham diagram). The base metals (as Fe and Cu) are reactive with respect to superconductive ceramics but not silver.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Niska, J. and Loberg, B. in Hot Isostatic Pressing: Theory and Applications, edited by Schaefer, R.J. and Linzer, M. (ASM, Metals Park, OH, 1991) pp. 33053313.Google Scholar
2. Niska, J., Loberg, B. and Easterling, K., J. Am. Ceram. Soc. 72 (8), 15081510 (1989).CrossRefGoogle Scholar
3. Karpinski, J., Kaldis, E., Jilek, E., Rusiecki, S. and Bucher, B., Nature 336, 660662(1988).Google Scholar
4. Niska, J., Andersson, B.M., Loberg, B., Easterling, K. and Sundqvist, B., J. Mat. Sci. Lett. 9, 770771 (1990).Google Scholar
5. Lindemer, T. B., Washburn, F.A., MacDougall, C.S., Feenstra, R. and Cavin, O.B., Physica C 178, 93104 (1991).Google Scholar
6. Dou, S.X., Liu, H.K., Aperley, M.H., Song, K.H., Sorrell, C.C., Easterling, K.E., Niska, J. and Guo, S.J., Physica C 167, 525528 (1990).CrossRefGoogle Scholar
7. Reid, R. C., Prausnitz, J. M. and Poling, B. E., The Properties of Gases and Liquids, 4th ed. (McGraw-Hill, New York, 1987) p. 664; R. C. Reid, J. M. Prausnitz and B. E. Poling, The Properties of Gases and Liquids, 4th ed. (McGraw-Hill, New York, 1987) p. 32.Google Scholar
8. Lindemer, T.B., Hunley, J.F., Gates, J.E., Sutton, A.L. Jr., Brynestad, J., Hubbard, C.R., and Gallagher, P.K., J. Am. Ceram. Soc. 72 (10), 17751788 (1989).CrossRefGoogle Scholar
9. Mathews, T. and Jacob, K.T., Appl. Phys. Lett. 57, 511 (1990).Google Scholar
10. Weast, R. C., editor, Handbook of Chemistry and Physics, 50th Ed. (The Chemical Rubber Co., Cleveland, OH, 1969) p. D49.Google Scholar
11. Richardson, F. D. and Jeffes, J. H. E., J. Iron Steel Inst. 160, 261270 (1948).Google Scholar
12. Ishizaki, K., Acta metall. mater. 38 (11), 20592066 (1990).CrossRefGoogle Scholar
13. Endo, U., Koyama, S. and Kawai, T., Jap. J Appl Phy. 27 (8) L1476–L1479 (1988).Google Scholar