Hostname: page-component-84b7d79bbc-g78kv Total loading time: 0 Render date: 2024-07-29T02:17:18.523Z Has data issue: false hasContentIssue false

Role of Thermal Vacancies on Temperature Dependence of Lattice Parameter and Elastic Moduli in B2-type FeAl

Published online by Cambridge University Press:  28 December 2012

Mi Zhao
Affiliation:
Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan.
Kyosuke Yoshimi
Affiliation:
Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan.
Kouichi Maruyama
Affiliation:
Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan.
Kunio Yubuta
Affiliation:
Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan.
Get access

Abstract

Temperature dependence of the lattice parameter and elastic moduli in Fe-40 and -43Al (at.%) was investigated by high temperature X-ray diffractometry (XRD) and the Electro-Magnetic Acoustic Resonance (EMAR) method. The thermal vacancy concentration was estimated from the activation enthalpy and entropy data of vacancy formation previously reported for FeAl. It was found that both the lattice parameter and the elastic moduli of FeAl have a linear relationship with temperature even in the temperature range where thermal vacancy concentration rapidly increases (above 400 °C), thus suggesting that newly generated thermal vacancies at elevated temperature do not make significant influence on the lattice parameter and the elastic properties of B2-type FeAl.

Type
Articles
Copyright
Copyright © Materials Research Society 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Würschum, R., Grupp, C. and Schaefer, H. E., Phys. Rev. Lett., 75 (1995), 97100.CrossRefGoogle Scholar
Rieu, J. and Goux, C., Mem. Sci. Rev. Metall., 65 (1969), 869880.Google Scholar
Nagpal, P. and Baker, I., Metall. Trans. A, 21A, (1990), 22812282.10.1007/BF02647891CrossRefGoogle Scholar
Chang, Y. A., Pike, L. M., Liu, C. T., Bilbrey, A. R. and Stone, D. S., Intermetallics, 1 (1993), 107115.10.1016/0966-9795(93)90028-TCrossRefGoogle Scholar
Yoshimi, K., Saeki, Y., Yoo, M. H. and Hanada, S., Mater. Sci. Eng. A, 258 (1998), 7583.CrossRefGoogle Scholar
Xiao, H. and Baker, I., Acta Metall. Mater., 43 (1995), 391396.Google Scholar
George, E. P. and Baker, I., Phil. Mag. A, 77 (1998) 737750.CrossRefGoogle Scholar
Yoshimi, , Matsumoto, N., Hanada, S. and Watanabe, S., Proc. 3rd Japan Inter. SAMPE Symp., ed. by Yamaguchi, M. and Fukutomi, H., (1993), 14041409.Google Scholar
Kittel, C., Introduction to Solid State Physics, Eighth Edition, (New York: John Wiley & Sons, Inc. Publisher, 2005), 120121.Google Scholar
Ho, K. and Dodd, R. A., Scripta Metall., 12 (1978), 10551058.10.1016/0036-9748(78)90024-8CrossRefGoogle Scholar
Kogachi, M., Haraguchi, T. and Kim, S. M., Intermetallics, 6 (1998), 499510.CrossRefGoogle Scholar
Yang, Y. and Baker, I., Intermetallics, 6 (1998), 167175.10.1016/S0966-9795(97)00062-9CrossRefGoogle Scholar
Kupka, M., J. Alloys Compd., 437 (2007), 373377.10.1016/j.jallcom.2006.12.013CrossRefGoogle Scholar
Ohno, I., J. Phys. Earth, 24 (1976), 355379.10.4294/jpe1952.24.355CrossRefGoogle Scholar
Tarumi, R., Shiraishi, K. and Hirao, M., ISIJ International, 49 (2009), 14321435.CrossRefGoogle Scholar
Varshni, Y. P., Phys. Rev. B, 2 (1970), 39523958.CrossRefGoogle Scholar
Damask, A. C. and Dienes, G. J., in: Point Defects in Metals, (New York: Gordon and Breach Science Publisher, 1963).Google Scholar