Hostname: page-component-84b7d79bbc-4hvwz Total loading time: 0 Render date: 2024-08-04T05:20:42.888Z Has data issue: false hasContentIssue false

The Roles of “3d/2d” and “3d/3d” Topography Simulators in Virtual Wafer Fabs

Published online by Cambridge University Press:  10 February 2011

T. S. Cale
Affiliation:
Dept. of Chemical Eng., Rensselaer Polytechnic Institute, Troy, NY 12180
T. P. Merchant
Affiliation:
Predictive Engineering Laboratory, Motorola, Inc. Mesa, AZ 85202
L. J. Borucki
Affiliation:
Predictive Engineering Laboratory, Motorola, Inc. Mesa, AZ 85202
Get access

Abstract

After discussing topography simulation, we summarize two approaches used to move surfaces in topography simulators used in virtual semiconductor wafer fabs; “front tracking” and “level set”. Front tracking is presented for two dimensional (2d) surfaces, and a number of examples are shown to demonstrate the approach. The level set approach is presented for three dimensional (3d) surfaces, and examples are shown. Though either approach could be used in both 2d and 3d topography simulators, this is by and large the current usage. Transport and reaction submodels needed for physically based process simulations will continue to be developed using experiments performed on structures that are inherently 2d, combined with three dimensional 3d transport simulations; i.e., “3d/2d” simulations. Three dimensional device structures will be generated using “3d/3d” topography simulations, using robust codes. Plasma enhanced deposition of silicon dioxide from TEOS is used as an example of how 3d/2d and 3d/3d simulations are used.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cale, T. S. and Raupp, G. B., J. Vac. Sci. Technol. B 8(4), 649 (1990); 8(6), 1242 (1990);Google Scholar
Cale, T. S., J. Vac. Sci. Technol. 9(5), 2552 (1991).Google Scholar
2. Islam-Raja, M. M., Capelli, M. A., McVittie, J. P. and Saraswat, K. C., J. Appl. Phys. 70(11), 7137 (1991).Google Scholar
3. Singh, V. K., Shaqfeh, E. S. G. and McVittie, J. P., J. Vac. Sci. Technol. B 10(3), 1091 (1992).Google Scholar
4. Ross, D. S., J. Electrochem. Soc. 135(5), 1235 (1988); 1260 (1988).Google Scholar
5. Sethian, J. A., Level Set Methods, Cambridge, 1996.Google Scholar
6. Hamaguchi, S., Dalvie, M., Farouki, R. T. and Sethuraman, S., J. Appl. Phys. 74(8), 5172 (1993).Google Scholar
7. EVOLVE is a deposition, etch and reflow process simulator developed by T. S. Caie with funding from the Semiconductor Research Corporation, the National Science Foundation and Motorola.Google Scholar
8. Cale, T. S., in Modeling and Simulation of Thin-Film Processing, MRS Symp. Proc. Vol. 389, 1995, p. 95.Google Scholar
9. Cale, T. S. and Mahadev, V., in Modeling of Film Deposition for Microelectronic Applications, Thin Films Vol. 22, Academic Press, Academic, 1996.Google Scholar
10. Liao, H. and Cale, T. S., J. Vac. Sci. Tech. A 12(4), 1020 (1994).Google Scholar
11. Thallikar, G., Liao, H., Cale, T. S. and Myers, F. R., J. Vac. Sci. Technol. B 13(4), 1875 (1995).Google Scholar
12. Arnold, J. C, Sawin, H. H., Dalvie, M. and Hamaguchi, S., J. Vac. Sci. Technol. A 12(3), 620 (1994).Google Scholar
13. Cale, T. S., Mahadev, V. and Rajagopalan, G., VLSI Design 6, (in press) 1997 Google Scholar
14. Whitman, G., Linear and Nonlinear Waves, Wiley, 1974.Google Scholar
15. Han, J. S., McVittie, J. P. and Zheng, J., J. Vac. Sci. Technol. B 13(4), 1893 (1995).Google Scholar
16. Hwang, G. S., Anderson, C. M., Gordon, M. J., Moore, T. A., Minton, T. K. and Giapis, K. P., Phys. Rev. Let. 77(14), 3049 (1996).Google Scholar
17. Donelly, V. M., J. Appl. Phys. 79(12), 9353 (1996); J. Vac. Sci. Technol. A 14(3), 1076 (1996)Google Scholar
18. Lee, R. E., J. Vac. Sci. Technol. 16(2), 164 (1979).Google Scholar
19. Bailey, A. D. III, Van de Sanden, M. C. M., Gregus, J. A. and Gottscho, R. A., J. Vac. Sci. Technol. A 13(1), 92 (1995).Google Scholar
20. Raupp, G. B., Cale, T. S. and Hey, H. P. W., J. Vac. Sci. Technol. B 10(1), 37 (1992).Google Scholar
21. Cale, T. S., Raupp, G. B. and Gandy, T. H, J. Vac. Sci. Technol. A 10(4), 1128 (1992).Google Scholar
22. Cale, T. S., Raupp, G. B., Rogers, B. R., Myers, F. R. and Zirkle, T. E., in Plasma Processing of Semiconductors, Williams, F. (ed.), NATO ASI Series E, Vol. 336, Kluwer Academic, 1997, p. 89.Google Scholar
23. Zirkle, T. E., Drowley, C., Cowden, W. G. and Cale, T. S., Thin Solid films 220, 45 (1992).Google Scholar
24. ASSET is a simulation environment written by L. J. Borucki at Motorola. The low pressure service for ASSET was written by L. J. Borucki, T. P. Merchant and T. S. Cale at Motorola.Google Scholar
25. Merchant, T. P., Ph.D. Diss., Massachusetts Institute of Technology, 1994;Google Scholar
Merchant, T. P., Cole, J. V., Hebb, J. P., Knutson, K. L. and Mihopoulos, T. G., J. Electrochem. Soc. 143(6), 2035 (1996).Google Scholar
26. Liao, H. and Cale, T. S., Thin Solid films 236(1), 352 (1993).Google Scholar