Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-11T05:26:34.708Z Has data issue: false hasContentIssue false

Room Temperature Magnetoresistive Response in CMR Perovskite Manganite Thin Films

Published online by Cambridge University Press:  10 February 2011

Michael A. Todd
Affiliation:
Advanced Technology Materials, Inc., Advanced Delivery and Chemical Systems Division, 7 Commerce Dr., Danbury, CT 06810
Charles Seegel
Affiliation:
Advanced Technology Materials, Inc., Advanced Delivery and Chemical Systems Division, 7 Commerce Dr., Danbury, CT 06810
Thomas H. Baum
Affiliation:
Advanced Technology Materials, Inc., Advanced Delivery and Chemical Systems Division, 7 Commerce Dr., Danbury, CT 06810
Get access

Abstract

Perovskite-structured LaxSryMnO3 thin-films have been deposited onto LaAlO3 substrates via liquid delivery chemical vapor deposition (LD-CVD) using metal(β-diketonato) precursors, M(thd)x [where M= Ca, Sr, La and Mn, thd = 2,2,6,6-tetramethyl-3,5-heptanedionato and x = 2–3]. Thin films were deposited at temperatures between 500 and 700 °C and subsequently annealed at 1000 °C under O2. These films possess stoichiometries that are: i) vastly different from the La0.67Sr0.33MnO3 compositions commonly reported in the literature and ii) display high temperature, low field responses that may be technologically important. Resistance versus temperature measurements revealed a metal to semiconductor transition at room temperature and above. Hall measurements on a film of La0.35Sr0.24MnO3 displayed a magnetoresistive response (MR) of -10% at 57 °C in a fixed magnetic field of 780 Oe. Based upon our research, the observed film properties are directly related to the deposited film stoichiometry and the best results were observed at Sr / La ratios between 0.30 and 1.0 for A-site deficient LaxSryMnO3 thin-films after thermal annealing.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Derbyshire, K. and Korczynski, E., “Giant Magnetoresistance for Tomorrow's Hard Drives”, Solid State Technology, September, 57 (1995).Google Scholar
2. Singer, P., “Read/Write Heads: The MR Revolution”, Semiconductor International, February, 71 (1997).Google Scholar
3. Parkin, S.S. P., Mater. Res. Soc. Symp. Proc,, (1997).Google Scholar
4. Gupta, A., McGuire, T. R., Duncombe, P. R., Rupp, M., Sun, J. Z., Gallagher, W. J. and Wang, G., Appl. Phys. Lett., 67 (23), 3494 (1995).Google Scholar
5. von Helmont, R., Wecker, J., Holzapfel, J., Schulz, L. and Samwer, K., Phys. Rev Lett., 71, 2331 (1993).Google Scholar
6. Rao, G.H., Sun, J.R., Liang, J.K., Zhou, W.Y. and Cheng, X.R.. Appl. Phys. Lett., 69(3), 424 (1996).Google Scholar
7. Tomioka, Y., Kuwahara, H., Asamitsu, A., Kasai, M. and Tokura, Y.. Appl. Phys. Lett., 70 (26), p. 3609 (1997).Google Scholar
Sengoku, N. and Ogawa, K., Jpn. J. Appl. Phys., 35(pt.l, 10), p. 5432 (1996).Google Scholar
Gu, J.Y., Kim, K.H., Noh, T.W. and Suh, K.S., J. Appl. Phys., 78(10), p. 6151 (1995).Google Scholar
8. Bozovic, I. and Eckstein, J.N., Appl. Surf. Sci., 4018, p. 1 (1997).Google Scholar
9. Bae, S.Y. and Wang, S.X.. Appl. Phys. Lett. 69(1), p. 121 (1996).Google Scholar
10. Zhang, J., Pombrik, S., J. Mater. Res., (1994).Google Scholar
Dahmen, K. H. and Carris, M.W., Chem. Vap. Deposition, 3(1), p. 27 (1997).Google Scholar
11. Snyder, G.J., Hiskes, R., DiCarolis, S., Beasley, M.R. and Geballe, T.H., Phys. Rev. B, 53(21), p. 14, 434(1996).Google Scholar