Hostname: page-component-7bb8b95d7b-l4ctd Total loading time: 0 Render date: 2024-09-05T18:21:06.437Z Has data issue: false hasContentIssue false

Scanning Tunneling Microscopy of Platinum Clusters on Hop-Graphite

Published online by Cambridge University Press:  21 February 2011

Klaus Sattler
Affiliation:
Department of Physics and Astronomy, University of Hawaii, Watanabe Hall, 2505 Correa Road, Honolulu, Hawaii 96822, USA
Ulrich Mueller
Affiliation:
Department of Physics and Astronomy, University of Hawaii, Watanabe Hall, 2505 Correa Road, Honolulu, Hawaii 96822, USA
Jie Xhie
Affiliation:
Department of Physics and Astronomy, University of Hawaii, Watanabe Hall, 2505 Correa Road, Honolulu, Hawaii 96822, USA
Narayana Venkateswaran
Affiliation:
Department of Physics and Astronomy, University of Hawaii, Watanabe Hall, 2505 Correa Road, Honolulu, Hawaii 96822, USA
Gargi Raina
Affiliation:
Department of Physics and Astronomy, University of Hawaii, Watanabe Hall, 2505 Correa Road, Honolulu, Hawaii 96822, USA
Get access

Abstract

We report on recent studies of small platinum clusters supported on highly-oriented pyrolytic graphite, using a scanning tunneling microscope (STM). The clusters are generated by vapor deposition of single atoms with subsequent diffusion and growth processes occurring on large, flat and ordered substrates. Single adatoms, small clusters and larger islands are imaged with atomic resolution and their atomic structures are determined by direct observation. We find different isomeric structures for clusters of one size. Taking the substrate lattice as reference we determine bond lengths and angles for the clusters. We investigate the effect of the substrate on the adsorbed particles.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

01. Venables, J.A., Derrien, J. and Janssen, A.P., Surf. Sci. 95, 441 (1980)Google Scholar
02. Grier, D., Ben-Jacob, E., Clarke, R. and Sander, L.M., Phys. Rev. Lett. 56, 1264 (1986)Google Scholar
03. Matolin, V. and Gillet, E., Surf. Sci. 166, L115 (1986)Google Scholar
04. Masson, A., Bellamy, B., Romdhane, Y. Hadj, Che, M., Roulet, H. and Dufour, G., Surf. Sci. 173, 479 (1986)Google Scholar
05. Venables, J.A., Spiller, G.D.T. and Hanbucken, M., Rep. Prog. Phys. 47, 399 (1984)Google Scholar
06. Kellog, G.L., Surf. Sci. 187, 153 (1987)Google Scholar
07. Iijima, S. and Ichihashi, T., Phys. Rev. Lett. 56, 616 (1986)Google Scholar
08. Sattler, K., in Ref. 3Google Scholar
09. Ganz, E., Sattler, K. and Clarke, J., J. Vac. Sci. Technol. A 6, 419 (1988)Google Scholar
10. Ganz, E., Sattler, K. and Clarke, J., Phys. Rev. Lett. 60, 1856 (1988); E. Ganz, K. Sattler and J. Clarke. Surf. Sci. 219, 33 (1989)Google Scholar
11. Anno, E. and Hoshono, R., Surf. Sci. 144, 567 (1984)Google Scholar
12. Fayet, P., Granzer, F., Hegenbart, G., Moisar, E., Pischel, B. and Woeste, L., Phys. Rev. Lett. 55, 3002 (1985)Google Scholar
13. Wertheim, G.K., DiCenzo, S.B., and Buchanan, D.N.E., Phys. Rev. B 33, 5384 (1986)Google Scholar
14. First, P.N., Stroscio, J. A., Dragoset, R.A., Pierce, D.T., and Celotta, R.J., Phys. Rev. Lett. 63, 1416 (1989)Google Scholar
15. Nanoscope, Digital Instruments, Inc., Santa Barbara, CA, USAGoogle Scholar