Hostname: page-component-7479d7b7d-m9pkr Total loading time: 0 Render date: 2024-07-11T02:17:26.967Z Has data issue: false hasContentIssue false

Scanning Tunneling Microscopy of the Cleaved Surfaces of Bi-Containing Superconductors

Published online by Cambridge University Press:  21 February 2011

S. L. Tang
Affiliation:
E. I. du Pont de Nemours & Co., Experimental Station, Central Research & Development Department, Wilmington DE 19880–0328 USA
R. V. Kasowski
Affiliation:
E. I. du Pont de Nemours & Co., Experimental Station, Central Research & Development Department, Wilmington DE 19880–0328 USA
M. A. Subramanian
Affiliation:
E. I. du Pont de Nemours & Co., Experimental Station, Central Research & Development Department, Wilmington DE 19880–0328 USA
E. M. Mccarron
Affiliation:
E. I. du Pont de Nemours & Co., Experimental Station, Central Research & Development Department, Wilmington DE 19880–0328 USA
W. Y. Hsu
Affiliation:
E. I. du Pont de Nemours & Co., Experimental Station, Central Research & Development Department, Wilmington DE 19880–0328 USA
Get access

Abstract

Scanning tunneling microscopy (STM) images of the cleaved surfaces of Bi2Sr2CaCu2O8 (2212), Bi2Sr2CuO6 (221), and the Pb-substituted Bi1.5Pb0.5Sr2CuO6 (Pb-substituted 221) at room temperature have been obtained. On the 2212 (Tc=85 K) compound, high resolution images show striations ˜10 Å to 30 Å wide. Similar striations of a periodicity of ˜27 Å are also observed on the 221 (Tc=10 K) compound. On the Pb-substituted 221 (Tc=25 K) compound, no periodic structure can be observed. On samples oriented with Laue reflection, the striations are observed to run parallel to the a or b axis of the crystal. These striations are likely to be associated with the undulations along the b axis of the Bi layer observed in recent transmission electron micrographs. For the 2212 compound, comparison of the dependence of scan line characteristics on tunneling bias with calculations on the density of states of each elemental component around the Fermi energy also suggests that tunneling occurs on the Bi face. The topographical and tunneling bias dependence results show that the Bi-rich surfaces of these new superconductors is essentially a termination of the bulk structure even though structural or chemical defects are common.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES:

1. Binnig, G., Rohrer, H., Gerber, Ch., and Weibel, E., Phys. Rev. Lett., 50, 120 (1983).CrossRefGoogle Scholar
2. Binnig, G., Fuchs, H., Gerber, Ch., Rohrer, H., Stoll, E. and Tosatti, E., Europhys. Lett., 1, 31 (1986).CrossRefGoogle Scholar
3. Feenstra, R. M., Thompson, W. A., and Fein, A. P., Phys. Rev. Lett. 56, 608 (1986).CrossRefGoogle Scholar
4. Becker, R. S., Golovchenko, J. A., Hamann, D. R., and Swartzentruber, B. S., Phys. Rev. Lett. 55, 2032 (1985); G. Binnig and H. Rohrer, IBM J. Res. Dev. 30, 355 (1986); R. J. Hamers, R. M. Tromp, and J. E. Demuth, Phys. Rev., Lett. 5B, 1972 (1986); J. A. Stroscio, R. M. Feenstra and A.J. Fein, Phys. Rev. Lett. 57, 2579 (1986); W. J. Kaiser and R. C. Jaklevic, Surf. Sci. 1M1, 55 (1987); J. A. Stroscio, R. M. Feenstra, D. M. Newns and A. P. Fein, J. Vac. Sci. Technol., AD, 499 (1988).CrossRefGoogle Scholar
5. Maeda, H., Tanaka, Y., Fukutomi, M., and Asano, T., Jpn. J. Appl. Phys. Lett. 27, L209 (1988); R. M. Hazen, C. T. Prewitt, R. J. Angel, N. L. Ross, L. W. Finger, C. G. Hadidiacos, D. R. Veblen, P. J. Heaney, P. H. Hor, R. L. Meng, Y. Y. Sun, Y. O. Wang, Y. Y. Xue, Z. J. Huang, L. Gao, J. Bechtold, and C. W. Chu, Phys. Rev. Lett. 60, 1174 (1988).CrossRefGoogle Scholar
6. Torardi, C. C., Subramanian, M.., Calabrese, J.C., Gopalakrishnan, J., McCarron, E. M., Morrissey, K. J., Askew, T. R., Flippen, R. B., Chowdhry, U. and Sleight, A. W., Phys. Rev. B. 38. 225 (1988).CrossRefGoogle Scholar
7. McCarron, E. M., unpublished.Google Scholar
8. Tang, S. L., Kasowski, R. V., Subramanian, M. A. and Hsu, W. Y., Physica C 156, 177 (1988).CrossRefGoogle Scholar
9. Kirk, M. D., Eom, C. B., Oh, B., Spielman, S., Beasley, M. R., Kapitulnik, A., Geballe, T. H. and Quate, C. F., Appl. Phys. Lett. 52, 2071 (1988).CrossRefGoogle Scholar
10. Yan, Gao, Peter, Lee, Philip, Coppens, Subramanian, M. A., Sleight, A. W., Science 241, 954 (1988).Google Scholar
11. Hewat, E. A., Bordet, P., Capponi, J. J., Chaillout, C., Hodeau, J. L. and Marezio, M., Physica C 153–155, 619 (1988).CrossRefGoogle Scholar
12. Subramanian, M. A., Torardi, C. C., Calabrese, J. C., Gopalakrishnan, J., Morrisey, K. J., Askew, T. R., Flippen, R. B., Chowdhry, U., Sleight, A. W., Science 23, 1015 (1988).CrossRefGoogle Scholar
13. Tersoff, J., and Hamann, D. R., Phys. Rev. Lett. 5, 1998 (1983); Phys. Rev. B 31, 805 (1985); A. Selloni, P. Carnevali, E. Tosatti and C. D. Chen, Phys. Rev. B 31, 2602 (1985).CrossRefGoogle Scholar
14. Herman, F., Kasowski, R. V. and Hsu, W. Y., Phys. Rev. B 8, 204 (1988).CrossRefGoogle Scholar
15. Hybertsen, M. S. and Mattheiss, L. F., Phys. Rev. Lett. 60, 1661 (1988); H. Krakauer and W. E. Pickett, Phys. Rev. Lett. _60, 1665 (1988); S. Massidda, Jaejun Yu, and A. J. Freeman, Physica C 152, 251 (1988).CrossRefGoogle Scholar