Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-18T06:42:11.702Z Has data issue: false hasContentIssue false

S-Doped GaInAs Grown By Chemical Beam Epitaxy: Electrical And Structural Characterization

Published online by Cambridge University Press:  15 February 2011

E. C. Paloura
Affiliation:
Aristotle Univ. of Thessaloniki, Dept. of Physics, GR-54006 Thessaloniki, Greece.
G. Petkos
Affiliation:
Univ. of Liverpool, Dept. of Materials Science & Engineering, Liverpool, L69 3BX, U.K.
P. J. Goodhew
Affiliation:
Univ. of Liverpool, Dept. of Materials Science & Engineering, Liverpool, L69 3BX, U.K.
B. Theys
Affiliation:
C.N.R.S., Lab. de Physique des Solides de Bellevue, F.92.195 Meudon Cedex, France.
J. Chevallier
Affiliation:
C.N.R.S., Lab. de Physique des Solides de Bellevue, F.92.195 Meudon Cedex, France.
Get access

Abstract

We report on the electrical and structural characterization of sulfur (S) doped Ga0.73In0.27As layers, grown on SI (001) GaAs substrates by chemical beam epitaxy. The room temperature free electron concentration is 2×1017cm−3 while the corresponding value of mobility is 3400 cm2V−1 s−1. The epilayer is characterized by a deep trap, which could be attributed to the electrical activity of dislocations, with an activation energy of 0.59 eV and a capture cross section 6×10−15 cm2. TEM analysis shows that the GaInAs/GaAs interface is characterized by dislocation lines and loop-like configurations which could be attributed to climb movement by point defect absorption or emission. Annealing at 420°C (Ar ambient for 5 min) does not alter the carrier concentration (n) and mobility (μ) significantly. The invariance of n and μ, even though the temperature should be high enough to dissociate any Satomic hydrogen complexes, indicates that the number of hydrogen-S donor complexes in the as-grown material is small compared with the donor concentration. Finally, the effect of intentional atomic hydrogen diffusion is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kuhn, K. J., Darling, R. B., IEEE Trans. Electron. Devices ED–39, 1288 (1992).Google Scholar
2. Dobbelaere, W., Boeck, J. De, Hermans, P., Mertens, R., Borghs, G., Luyten, W., Landuyt, J. Van. Appl. Phys. Lett. 60, 868 (1992).Google Scholar
3. Dobbelaere, W.,Raedt, W. De, Boeck, J. De, Hermans, P., Mertens, R., Borghs, G., Ellectron. Lett. 28, 372 (1992).Google Scholar
4. Watson, G. P., Ast, D. G., Anderson, T. J., Pathangey, B., Hayakawa, Y., J. Appl. Phys. 71, 3399 (1992).Google Scholar
5. Matragrano, M. J., Watson, G. P., Ast, D. G., Anderson, T. J., Pathangey, B., Appl. Phys. Lett. 62, 1417 (1993).Google Scholar
6. Skevington, P. J., Andrews, D. A. and Davies, G. J., J. Crystal Growth 105, 371 (1990).Google Scholar
7. Joyce, T. B., Pfeffer, T., Bullough, T. J. and Jones, A. C., J. Crystal Growth 135, 31 (1994).Google Scholar
8. Joyce, T. B., Pfeffer, T. L., Bullough, T. J., Petkos, G., Goodhew, P. J. and Jones, A. C., J. Cryst. Growth 150, 644 (1995).Google Scholar
9. Hirtz, J. P., Mater. Sci. Eng. B 17, 9 (1993).Google Scholar
10. Bachwald, W. R., Zhao, J. H., Harmatz, M. and Poindexter, E. H., Sol. State Electr. 36, 1077 (1993).Google Scholar
11. Chattopadhyay, D., Sutradhar, S. K. and Nag, B. R., J. Phys. C: Solid Satte Phys. 14, 891 (1981) and references therein.Google Scholar
12. Metzger, R. A., Brown, A. S., McGray, L. G. and Henige, J. A., J. Vac. Sci. Technol. B 11, 798 (1993)Google Scholar
13. Tokumitsu, E., Shirakashi, J., Qi, M., Yamada, T., Nozaki, S., Konagai, M., Takahashi, K., J. Cryst. Growth 120, 301 (1992).Google Scholar
14. Biswas, D., Chin, A., Pamulapati, J. and Bhattacharya, P., J. Appl. Phys. 67, 2450 (1990).Google Scholar
15. Watson, G. P., Ast, D. S., Anderson, T. J., Rathangey, B. and Hayakawa, Y., J. Appl. Phys. 71, 3399 (1992).Google Scholar
16. Theys, B., Machayekhi, B., Chevallier, J., Somogyi, K., Zahraman, K., Gibart, P., Miloche, M., J. Appl. Phys. 77, 3186 (1995)Google Scholar
17. Machayekhi, B., Rahbi, R., Theys, B., Miloche, M., Chevallier, J., Mat. Sci. Forum 143–147, 951 (1994).Google Scholar
18. Chevallier, J., Defect and Diffusion Forum, 131–132, 9, (1996).Google Scholar
19. MacPherson, G., Goodhew, P. J., J. Appl. Phys. 80, 1 (1996).Google Scholar
20. Petkos, G. M., Goodhew, P. J. and Joyce, T. B., J. Crystal Growth, 164, 415 (1996).Google Scholar
21. Goodhew, P. J., J. Phys. Chem. Solids 55(10), 1107 (1994).Google Scholar
22. Kim, D. K. and Lee, B. T., Materials Letters 20, 335 (1994).Google Scholar
23. Yonenaga, I. and Sumino, K., J. Appl. Phys. 65(1), 85 (1989).Google Scholar
24. Yonenaga, I. and Sumino, K., J. Appi. Phys. 74(2), 917 (1993).Google Scholar
25. Jacob, G., Overs, A., Guillot, R., Gall, P., Bonnafe, J., L'Haridon, H. and Coquille, R., Proc. of the Conf. on InP and Related Materials, 634 (1993).Google Scholar