Hostname: page-component-84b7d79bbc-g5fl4 Total loading time: 0 Render date: 2024-07-30T11:21:14.770Z Has data issue: false hasContentIssue false

Selective Area Epitaxy of GaAs Optical Waveguides by Laser Assisted Chemical Vapor Deposition

Published online by Cambridge University Press:  15 February 2011

J.C. Roberts
Affiliation:
Dept. of ECE, Campus Box 7911, North Carolina State University, Raleigh, NC 27695
K.S. Boutros
Affiliation:
Dept. of ECE, Campus Box 7911, North Carolina State University, Raleigh, NC 27695
S.M. Bedair
Affiliation:
Dept. of ECE, Campus Box 7911, North Carolina State University, Raleigh, NC 27695
Get access

Abstract

Direct writing of GaAs optical waveguides has been achieved by laser assisted chemical vapor deposition (LCVD). The multimode waveguides have gaussian-like cross sections, smooth surfaces, and exhibit losses as low as 5.4 dB/cm. The LCVD technique offers the capability of maskless in situ selective epitaxial growth of diverse multilayer structures, and is therefore a novel alternative for the monolithic integration of optoelectronic integrated circuits.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Botez, D., Herskowitz, G. J., “Components for Optical Communications Systems: A ReviewProc. of the IEEE 68, 689 (1980).Google Scholar
2 Roberts, J.C., Boutros, K.S., Bedair, S.M., Low Dimensional Structures Prepared by Epitaxial Growth or Regrowth on Patterned Substrates, ed. Eberl, Karl et al. , Kluwer Academic Publishers 219227 (1995).Google Scholar
3 Karam, N.H., Liu, H., Yoshida, I., Roberts, J.C., and Bedair, S.M., Inst. Phys. Conf. Ser. No. 96 (Int. Symp. GaAs and Related Compounds), p. 157 (1988).Google Scholar
4 Liu, H., Roberts, J.C., Ramdani, J., and Bedair, S.M., Appl. Phys. Lett., 58, 388 (1991).Google Scholar
5 Roberts, J.C., Liu, H., Boutros, K., Ramdani, J., and Bedair, S.M., SPIE, 1676, 94 (1992).Google Scholar
6 Boutros, K.S., Roberts, J.C., Bedair, S.M., Carruthers, T.F., and Frankel, M.Y., Appl. Phys. Lett. 66, 2397 (1994).Google Scholar
7 Liu, H., Roberts, J.C., Ramdani, J., and Bedair, S.M., Mat. Res. Soc. Symp. Proc. 158, 377 (1990).Google Scholar
8 Roberts, J.C., Boutros, K.S., Bedair, S.M., and Look, D.C., Appl. Phys. Lett. 64, 2397 (1994).Google Scholar
9 Deri, R.J., Kapon, E., and Schiavone, L.M., Appl. Phys. Lett., 51, 789 (1987).Google Scholar
10 Understanding Fiber Optics, J. Hecht, (Sams Understanding Series, 1987), p. 27.Google Scholar
11 Joyner, C.H., Dentai, A.G., Alferness, R.C., Buhl, L.L., Divino, M.D., and Dautremont-Smith, W.C., Appl. Phys. Lett., 50, 1509 (1987).Google Scholar
12 Hussien, S.A., Fahmy, A.A., El-Masry, N.A., and Bedair, S.M., Appl. Phys. Lett., 67, 3853 (1990).Google Scholar