Hostname: page-component-84b7d79bbc-rnpqb Total loading time: 0 Render date: 2024-07-29T16:21:48.689Z Has data issue: false hasContentIssue false

A Selective Growth of GaAs Microcrystals Grown on Se-Terminated GaAlAs Surface for the Quantum well Box Structure

Published online by Cambridge University Press:  28 February 2011

Toyohiro Chikyow
Affiliation:
National Research Institute for Metals, Tsukuba Laboratories, 1–2–1 Sengen Tsukuba-shi Ibaraki 305, Japan
Nobuyuki Koguchi
Affiliation:
National Research Institute for Metals, Tsukuba Laboratories, 1–2–1 Sengen Tsukuba-shi Ibaraki 305, Japan
Get access

Abstract

A selective growth of GaAs microcrystals was demonstrated on a Se-terminated GaAlAs surface. Ga molecules were supplied to the Se-terminated GaAlAs surface at first. The surface consisted of Ga droplets and bared Se-terminated GaAlAs surface. After the following As molecule supply to the surface, a selective GaAs microcrystal growth from Ga droplets was observed. The cross sectional investigations by the high resolution electron microscope revealed epitaxial growth of GaAs microcrystals with (111) facets and a possibility of (GaAl)2Se3, layer formation at the GaAs/Se-terminated GaAlAs interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Temkin, H., Dolan, G.J., Panish, M.B. and Chu, N.G., Appl. Phys. Lett., 50, 413(1987).Google Scholar
2. Arakawa, Y. and Sakaki, H., Appl. Phys. Lett., 40, 939 (1982).Google Scholar
3. Fukui, T., Ando, S., Tokura, Y. and Toriyama, T., Appl. Phys. Lett., 58, 2018 (1991).Google Scholar
4. Chikyow, T. and Koguchi, N., Jpn. J. Appl. Phys., 29, L2093 (1990).Google Scholar
5. Chikyow, T. and Koguchi, N., Surface Science 267, 241 (1992).Google Scholar
6. Koguchi, N., Takahashi, S. and Chikyow, T., J. Crystal Growth, 111, 688 (1991).Google Scholar
7. Ishige, K. and Koguchi, N., 10th Record of Alloy Semiconductor Physics and Electronics Symposium, 255 (1991).Google Scholar
8. Takahashi, S. and Koguchi, N., 9th Record of Alloy Semiconductor Physics and Electronics Symposium, 111 (1990).Google Scholar
9. Fan, J., Oigawa, and Nannichi, Y., Jpn. J. Appl. Phys., 27, L1331 (1988).Google Scholar
10. Nannichi, Y., Fan, J., Ando, K., Saiki, K. and Koma, A., Jpn. J. Appl. Phys., 27, L2367 (1988).Google Scholar
11. Takatani, S., Kikawa, T. and Nakazawa, M., Jpn. J. Appl. Phys., 30, 3763 (1991).Google Scholar
12. Ourmazd, A., Tsang, W.T., Rentschler, J.A. and Tayer, D.W., Appl. Phys. Lett., 20, 1417 (1987).Google Scholar
13. Killiaas, R., Proc.45th Annual EMSA meeting, p66 (1985). (The program MacTempas was provided to Ikeda, S., NRIM from Total Resolution).Google Scholar
14. Neave, J.H., Joyce, B.A. and Dobson, P.J., Appl. Phys., A34, 179 (1984).Google Scholar
15. Osaka, J., Inoue, N., Mada, Y., Yamada, K. and Wada, K., J. Crystal Growth 99, 120 (1990).Google Scholar
16. Ohno, T., Surface Science 111, 229 (1991).Google Scholar
17. Takatani, S., Nakano, A. Ogata, K. and Kikawa, T., Jpn. J. Appl. Phys. 31, l458 (1992).Google Scholar
18. Ourmazd, A., Baumann, F.H., Bode, M. and Kim, Y., Ultramicroscopy 34, 237 (1990).Google Scholar
19. Wagner, R.S. and Ellis, W.C., Appl. Phys. Lett., 4, 89 (1964).Google Scholar