Hostname: page-component-7bb8b95d7b-w7rtg Total loading time: 0 Render date: 2024-09-29T03:19:44.560Z Has data issue: false hasContentIssue false

Selective—Area Laser Photodeposition of Transparent Conductive SnO2 Films

Published online by Cambridge University Press:  25 February 2011

R.R. Kunz
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, 244 Wood Street, Lexington, MA 02173
M. Rothschild
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, 244 Wood Street, Lexington, MA 02173
D. J. Ehrlich
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, 244 Wood Street, Lexington, MA 02173
Get access

Abstract

The deposition of SnO2 films has been demonstrated using an ArF (193-nm) excimer laser to drive the photochemical reactions of mixed SnCI4 and N2O vapors. Without any annealing, films 100 nm thick grown on room—temperature substrates have resistivities as low as 0.04 Ω—cm. The optical bandgap of 3.20 ev and transmission cutoff wavelength of 330 nm compare favorably with films obtained using alternate higher temperature techniques. The maximum temperature excursion during the 20—ns laser pulse is estimated to be 300 to 400 ºC.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Iida, H., Shibata, N., Mishuku, T., Ito, A., Karasawa, H., and Hayashi, Y., IEEE Electron Device Lett. EDL–4, 157 (1983).CrossRefGoogle Scholar
2. Mellor, C. and Petersen, K. A., U.S. Patent Applied Docket No. 85–1-153 (Sept. 1987).Google Scholar
3. Schroder, D. K., IEEE Trans. Electron Devices 25, 90 (1978).Google Scholar
4. Manifacier, J. C., Thin Solid Films 90, 297 (1982).CrossRefGoogle Scholar
5. A review may be found in Laser Microfabrication: Thin-Film Processes and Lithography, edited by Ehrlich, D. J. and Tsao, J. Y., (Academic Press, New York, 1989).Google Scholar
6. Fernandez, J., Lespes, G., and Dargelos, A., Chem. Phys. 111, 97 (1987).CrossRefGoogle Scholar
7. Hubrich, C. and Stuhl, F., J. Photochem. 12, 93 (1980).Google Scholar
8. Batsanov, S. S. and Shestakova, N. A., Izv. Akad. Nauk SSSR, Neorg. Mater.[Inorg. Mater.(USSR)] 2, 110 (1966).Google Scholar
9. Banerjee, R. and Das, D., Thin Solid Films 149, 291 (1987).CrossRefGoogle Scholar
10. Spence, W., J. Appl. Phys. 38, 3767 (1967).Google Scholar
11. Samson, S. and Fonstad, C. G., J. Appl. Phys. 44, 4618 (1973).Google Scholar
12. Aboaf, J. A., Marcotte, V. C., and Chou, N. J., J. Electrochem. Soc. 120, 701 (1973).Google Scholar
13. Amimoto, S. T., Force, A. P., Gulotty, R. G., and Wiesenfeld, J. R., Chem. Phys. 71, 3640 (1979).Google Scholar
14. Tabuchi, T., Yamagishi, K., and Tarui, Y., Jpn. J. Appl. Phys. 26, L186 (1987).Google Scholar
15. Matsui, M., Oka, S., Yamegishi, K., Kuroiwa, K., and Tarui, Y., Jpn. J. Appl. Phys. 27, 506 (1988).Google Scholar