Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-19T05:40:02.469Z Has data issue: false hasContentIssue false

Self Organized Growth and Ultrafast Electron Dynamics in Metallic Nanoparticles

Published online by Cambridge University Press:  10 February 2011

A. Stella
Affiliation:
Istituto Nazionale per la Fisica della Materia, Dipartimento di Fisica “A. Volta”, Università di Pavia, Via Bassi 6, 27100 Pavia, Italy
P. Cheyssac
Affiliation:
Laboratoire de Physique de la Matière Condensée, URA 190, Université de Nice Sophia Antipolis, Nice Cedex, France
S. De Silvestri
Affiliation:
Centro di Elettronica Quantistica e Strumentazione Elettronica-CNR, Dipartimento di Fisica, Politecnico, Milano, Italy.
R. Kofman
Affiliation:
Laboratoire de Physique de la Matière Condensée, URA 190, Université de Nice Sophia Antipolis, Nice Cedex, France
G. Lanzani
Affiliation:
Centro di Elettronica Quantistica e Strumentazione Elettronica-CNR, Dipartimento di Fisica, Politecnico, Milano, Italy.
M. Nisoli
Affiliation:
Centro di Elettronica Quantistica e Strumentazione Elettronica-CNR, Dipartimento di Fisica, Politecnico, Milano, Italy.
P. Tognini
Affiliation:
Istituto Nazionale per la Fisica della Materia, Dipartimento di Fisica “A. Volta”, Università di Pavia, Via Bassi 6, 27100 Pavia, Italy
Get access

Abstract

We present ultrafast transient reflectivity measurements performed on metallic tin nanoparticles with an average radius between 20 and 60 Å in amorphous matrix. The samples, grown using an evaporation-condensation technique, were characterized by a relatively low nanocrystals size dispersion and a negligible clusters-matrix interaction. The excitation decays exhibited a size-dependent behaviour, which is interpreted in terms of the important role played by the electron-surface interactions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Murray, C.B., Kagar, C.R. and Bawendi, M.G., Science 270, 1335 (1995);Google Scholar
Alivisatos, A.P., Science 271, 933 (1996).Google Scholar
2. Stella, A., Cheyssac, P., Kofman, R., Merli, P. G., Migliori, A., Mat. Res. Soc. Symp. Proc. 400, 161 (1996);Google Scholar
Tognini, P., Andreani, L.C., Geddo, M., Stella, A., Cheyssac, P., Kofman, R., Il Nuovo Cimento D 18, 865 (1996).Google Scholar
3. Sondergard, E., Kofman, R., Cheyssac, P. and Stella, A., Surf. Sci. 364, 467 (1996).Google Scholar
4. Stella, A., Nisoli, M., De Silvestri, S., Svelto, O., Lanzani, G., Cheyssac, P. and Kofman, R., Phys. Rev. B 53, 15497(1996).Google Scholar
5. Kreibig, U. and Vollmer, M., Optical Properties of Metal Clusters, Springer-Verlag, Berlin, 1995.Google Scholar
6. Shah, J., Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures, Springer-Verlag, Berlin, 1996.Google Scholar
7. Schoenlein, R.W., Lin, W.Z., Fujimoto, J.G. and Eesley, G.S., Phys. Rev. Lett. 58, 1680 (1987).Google Scholar
8. Sun, C.-K., Vallèe, F., Acioli, L., Ippen, E.P. and Fujimoto, J.G., Phys. Rev. B 48, 12365 (1993).Google Scholar
9. Ashcroft, N.W. and Mermin, N.D., Solid State Physics, Holt-Saunders, Orlando, 1976.Google Scholar
10. Kreibig, U. and Fragstein, C.V., Z. Phys. 224, 307 (1969).Google Scholar