Hostname: page-component-5c6d5d7d68-ckgrl Total loading time: 0 Render date: 2024-08-20T17:40:42.839Z Has data issue: false hasContentIssue false

Self-Assembly of Layered Aluminum Silsesquioxanes: Clay-Like Organic-Inorganic Nanocomposites

Published online by Cambridge University Press:  10 February 2011

L. Ukrainczyk
Affiliation:
Dept. of Agronomy, Iowa State Univ., Ames, IA 50011
R. A. Bellman
Affiliation:
Dept. of Materials Science and Engineering, Iowa State Univ., Ames, IA 50011
K. A. Smith
Affiliation:
Dept. of Chemistry, Univ. of New Mexico, Albuquerque, NM 87131
J. E. Boyd
Affiliation:
Dept. of Chemistry, Univ. of New Mexico, Albuquerque, NM 87131
Get access

Abstract

A series of layered silicate-like structures with a wide range of Si/AI ratios that have an organic functionality directly bonded to the structural Si atom by Si-C bond were prepared by template sol-gel synthesis at room temperature and pressure. XRD patterns indicate that organic functionalities in the interlayers are in paraffin-like arrangement and do not interpenetrate. Structural ordering is primarily governed by the assembly of the organic functionalities into lamellar micelles. Nanocomposites were studied by solid state 29Si and 27AI NMR to determine the degree of condensation of inorganic framework. The results indicate that Si-O-Al linkages do not form in gels precipitated at low pH. Stable Si-O-Al linkages form when pH of the precipitates is raised. The highest degree of Si-O-Al bonding is obtained when Al solutions are prehydrolyzed prior to the addition of silane.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Monnier, A., Schuth, F., Huo, Q., Kumar, D., Margolese, D. I., Maxwell, R. S., Stucky, G. D., Krishnamurty, M., Petroff, P. M., Firouzi, A., Janicke, M., Chmelka, B. F., Science 261, 1299 (1993).Google Scholar
2 Huo, Q., Margolese, D. I., Ciesla, U., Feng, P., Gier, T. E., Sieger, P., Leon, R., Petroff, P. M., Schuth, F., Stucky, G. D., Nature 368, 317, (1994).Google Scholar
3 Fukushima, Y., Tani, M., J. Chem. Soc. Chem. Commun. 241 (1995).Google Scholar
4 Wood, J., Sharma, R., Langmuir 10, 2307 (1994);Google Scholar
Snover, J., Thompson, M. E., J. Am. Chem. Soc. 116, 765(1994).Google Scholar
5 Ukrainczyk, L., Bellman, R. A., Anderson, A. B., J. Phys. Chem. (in press).Google Scholar
6 Mehring, M., High Resolution NMR Spectroscopv of Solids: 2nd ed.; Springer-Verlag, New York, 1983.Google Scholar
7 Shea, K. J., Loy, D. A., Webster, O., J. Am. Chem. Soc. 114, 6700 (1992).Google Scholar
8 Sindorf, D. W., Maciel, G. E., J. Am. Chem. Soc. 105, 3767 (1983).Google Scholar
9 Murugavel, R., Voigt, A., Mrinalini, M., Walawalkar, G., Roesky, H. W., Chem. Rev. 96, 2205 (1996).Google Scholar