Hostname: page-component-84b7d79bbc-g5fl4 Total loading time: 0 Render date: 2024-07-29T18:18:22.059Z Has data issue: false hasContentIssue false

Semiconductor Dopant Profile and Dielectric Characterization with Scanning Capacitance Microscopy

Published online by Cambridge University Press:  01 February 2011

J. J. Kopanski*
Affiliation:
Semiconductor Electronics Division, National Institute of Standards and Technology, Gaithersburg, MD 20899–8120, U.S.A.
Get access

Abstract

Scanning capacitance microscopy (SCM) has been commonly used to image dopant gradients in silicon and other semiconductors. As a mobile, high-resolution (to 10 nm) metal-oxide-semiconductor (MOS) probe, SCM also is a non-destructive, contactless tool with which to examine local variations in dielectric thin film quality and local variations in semiconductor substrate properties. Virtually any measurement that can be made with fabricated metal electrodes can also be made with SCM. Two particular applications being pursued are characterization of high-κ dielectric films on silicon for next generation integrated circuits and characterization of native and deposited insulators on wide bandgap semiconductors.

Local differential capacitance (ΔC) versus tip bias (Vdc) measurements can be made with SCM using an ac voltage to generate the differential capacitance signal. These measurements differ from conventional C-V measurements due to the 3-D nature of the scanning capacitance microscope tip and the method used to generate the differential capacitance signal. Theoretical predictions and experimental measurements are made of SCM differential capacitance versus dc bias voltage (ΔC-V) curves for MOS capacitors with various levels of fixed and interface traps. The goal of this work is to determine if quantitative interface trap distributions can be made using SCM and if variations in interface density can be observed near defects or device structures. The response of the SCM MOS capacitance measurement to a local electric field stress and optical pumping from the atomic force microscope (AFM) laser will also be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. The International Technology Roadmap for Semiconductors is sponsored by the Semiconductor Industry Association (SIA), the European Electronic Component Association (EECA), the Japan Electronics & Information Technology Industries Association (JEITA), the Korean Semiconductor Industry Association (KSIA), and Taiwan Semiconductor Industry Association (TSIA). International SEMATECH is the global communication center for this activity.Google Scholar
2. Kopanski, J. J., Scanning Capacitance Probe Microscopy in The Encyclopedia of Imaging Science and Technology , pp. 1631, Wiley Interscience, New York, (2002).Google Scholar
3. Palmer, R. C., Deninger, E. J., and Kawamoto, H., RCA Review 43, 194 (1982).Google Scholar
4. Kopanski, J. J., Marchiando, J. F., Rennex, B. G., Simmons, D., Chau, Q., J. Vac. Sci. Technol. B 22, 399 (2004).Google Scholar
5. Scanning Capacitance Microscopy, Support Note No. 224, Rev. B, Digital Instruments Inc., 520 E. Montecito St., Santa Barbara, CA (1996).Google Scholar
6. Cimapolini, L., Ciappa, M., Malberi, P., and Fichtner, W., AIP Conf. Proc. 550, 647 (2001).Google Scholar
7. Williams, C. C. and McMurray, J., Conversion Algorithm and Software for Converting Scanning Capacitance Microscopy Data to 2D Dopant Density - DPAK - Version 3.01, University of Utah Invention Disclosure No. U-#2525 (2000).Google Scholar
8. Rennex, B. G., Kopanski, J. J., and Marchiando, J. F., AIP Conf. Proc. 550, 635 (2001).Google Scholar
9. Nicollian, E. H. and Brews, J. R., MOS (Metal Oxide Semiconductor) Physics and Technology, John Wiley & Sons, New York (1982).Google Scholar
10. Tomiye, H., Yao, T., Kawami, H., and Hayashi, T., Appl. Phys. Lett. 69, 4050 (1996).Google Scholar
11. Hong, J. W., Shin, S. M., Kang, C. J., Kuk, Y., Khim, Z. G., and Park, S., Appl. Phys. Lett. 75, 1760 (1999).Google Scholar
12. Goghero, D., Raineri, V., and Giannazzo, F., Appl. Phys. Lett. 81, 1824 (2002).Google Scholar
13. Yang, J. and Kong, F. C. J., Appl. Phys. Lett. 81, 4973 (2002).Google Scholar
14. Chim, W. K., Wong, K. M., Yeow, Y. T., Hong, Y. D., Lei, Y., Teo, L. W., and Choi, W. K., IEEE Electron Dev. Lett. 24, 667 (2003).Google Scholar
15. Marchiando, J. F., Kopanski, J. J., and Lowney, J. R., J. Vac. Sci. Technol. B 16: 463 (1998).Google Scholar
16. Yang, J., Kopanski, J. J., Postula, A., and Bialkowski, M., Proc. of the Workshop on Dielectric in Microelectronics (WoDiM), Cork, Ireland (June 2004), to appear in Microelectronics Reliability. Google Scholar
17. Vogel, E. M., Richter, C. A., and Rennex, B. G., Solid-State Electron. 47, 1589 (2003).Google Scholar
18. Zavyalov, V., McMurray, J., and Williams, C. C., J. Vac. Sci. Technol. B 18, 1125 (2000).Google Scholar
19. Kopanski, J. J., Thurber, W. R., and Chun, M. L., Proc. Electrochem. Soc., Interfaces in Electronic Materials, Cook, L. P., ed., Orlando, Fla., (2003).Google Scholar
20. Kang, K. M., Kuk, Y., Kwon, J., Kim, Y. S., Jeon, D., and Kang, C. J., Europhysics Lett. 67, 261 (2004).Google Scholar
21. Buh, G. H., Kopanski, J. J., Marchiando, J. F., Birdwell, A. G., and Kuk, Y., J. Appl. Phys. 94, 2680 (2003).Google Scholar
22. Buh, G. H. and Kopanski, J. J., Appl. Phys. Lett. 83, 2486 (2003).Google Scholar
23. Sephenson, R., Verhulst, A., DeWolf, P., Caymax, M., and Vandervorst, W., J. Vac. Sci. Technol. B 18, 405 (2000).Google Scholar