Hostname: page-component-848d4c4894-89wxm Total loading time: 0 Render date: 2024-07-07T15:19:02.308Z Has data issue: false hasContentIssue false

Silicon-Silicide Eutectic Composites

Published online by Cambridge University Press:  03 September 2012

Brian M. Ditchek
Affiliation:
Osram Sylvania Inc., 60 Boston St., Salem, MA 01970
Quang V. Nguyen
Affiliation:
SME Technologies, 21 Davis St., Belmont MA 02178
Philip G. Rossoni
Affiliation:
SME Technologies, 21 Davis St., Belmont MA 02178
Get access

Abstract

Many silicides, including TaSi2, CoSi2, TiSi2 and others, form eutectics with silicon. Directional solidification of melts with the eutectic composition and controlled doping of the silicon matrix results in two-phase electronic composites with oriented structures. Such composites have unusual microstructures and interesting properties resulting from the high density of Schottky junctions. In this paper, the growth, microstructure, transport properties and device applications of silicon-silicide composites are reviewed, concentrating mostly on the benchmark Si-TaSi2 system. The Si-TaSi2 interface, formed upon solidification, is characterized electrically as well as structurally by electron-beam induced current techniques, x-ray diffraction and high resolution TEM. It is shown that the interface is of remarkably good quality allowing the fabrication of very high quantum efficiency (80%) photodiodes and high voltage (up to 6kV) transistors.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jackson, K. A. and Hunt, J.D., Trans. Metall. Soc., AIME 236, 1129 (1966).Google Scholar
2. Muller, A. and Wilhelm, M., J. Phys. Chem. Solids 26, 2021 (1965).Google Scholar
3. Helbren, N.J. and Hiscocks, S.E.R., J. Mater. Sci., 8, 1744 (1973).Google Scholar
4. Reiss, B. and Renner, T., Z. Naturforsch 21 A, 546 (1966).Google Scholar
5. Hoof, L.A.H. van and Albers, W., J. Appl. Phys. 52, 3476 (1981).Google Scholar
6. Ditchek, B.M., J. Cryst. Growth, 75, 264 (1986).Google Scholar
7. Ditchek, B.M., Hefter, J., Middleton, T.R. and Pelleg, J., J.Cryst. Growth, 102, 401 (1990).Google Scholar
8. Ditchek, B.M., J. Appl. Phys., 61, 5419 (1987).Google Scholar
9. Hefter, J., Harris, J.L. and Ditchek, B.M., Proc. of the XIIth International Congress for Electron Microscopy, 546 (1990).Google Scholar
10. Yacobi, B.G. and Ditchek, B.M., Proc. Micros. Semicond. Mater. Conf. Oxford, England, 703 (1987).Google Scholar
11. Stock, S. R. et al. , J. Appl. Phys. 73 1737 (1993).Google Scholar
12. Hefter, J. and Chung, C.M., unpublished research.Google Scholar
13. Ditchek, B.M. and Levinson, Mark, Appl. Phys.Lett., 49, 1656 (1986).Google Scholar
14. Nicolet, M.A. et al. , VLSI Electronics (Academic, NY, 1983) p. 330.Google Scholar
15. Yacobi, B.G. and Ditchek, B.M., Appl. Phys.Lett., 50, 1083 (1987).Google Scholar
16. Ditchek, B.M., Yacobi, B.G. and Levinson, M., J. Appl. Phys., 63, 1964 (1988).Google Scholar
17. Samalam, V.J., J. Appl. Phys., 67, 2165 (1990).Google Scholar
18. Kirkpatrick, D. A. et al. , Appl.Phys.Lett., 59, 2094 (1991).Google Scholar
19. Ditchek, B.M., Appl. Phys.Lett., 51, 267 (1987).Google Scholar
20. Levinson, M., Schlafer, J. and Ditchek, B.M., IEEE Trans. on Elec. Dev., 38, 2563 (1991).Google Scholar
21. Ditchek, B.M., Middleton, T.R., Rossoni, P.G. and Yacobi, B.G., Appl. Phys. Lett., 52, 1147 (1988).Google Scholar
22. Rossoni, P.G., Levinson, M. and Ditchek, B.M., J. Appl. Phys. Lett., 70, 2861 (1991).Google Scholar
23. Nguyen, Q.V., Rossoni, P.G. and Ditchek, B. M., IEEE Cont. Rec. Twentieth Power Modulator Symposium, p. 274, (1992).Google Scholar
24. Nguyen, Q.V., unpublished research.Google Scholar
25. Kaufman, L. and Ditchek, B.M., J. Less Common Metals, 168, 115 (1991).Google Scholar